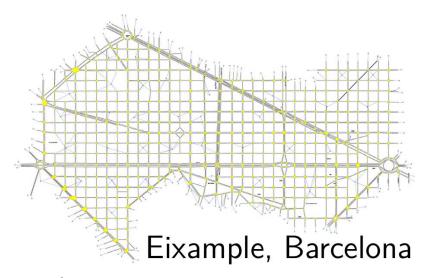
Optimization-based methods for large-scale urban traffic control

İşik İlber Sırmatel

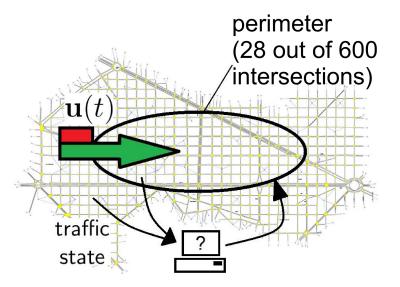
Department of EE Engineering
Faculty of Engineering
Trakya University

24.12.2025

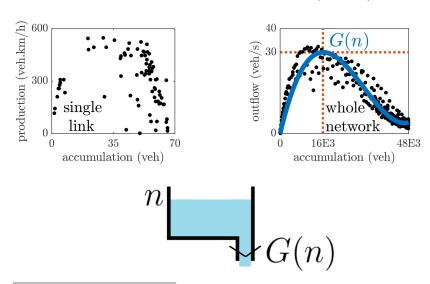
Why do we need traffic control?


Los Angeles, 1941

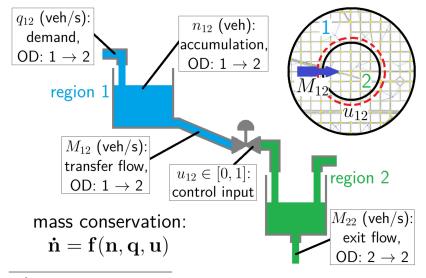
Los Angeles, 2013



Large-scale urban traffic control


12 km², \sim 600 intersections, \sim 1500 links

Traffic control with perimeter actuation

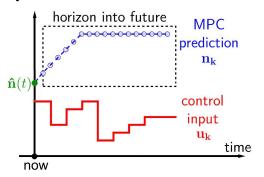

example: $\mathbf{u}(t) = 0.8 \rightarrow \text{traffic light cycle } 80\% \text{ green}$

Macroscopic fundamental diagram (MFD)¹

¹Nikolas Geroliminis and Carlos F Daganzo. *Transportation Research Part B: Methodological* 42.9 (2008), pp. 759–770.

Dynamics of a two region system²

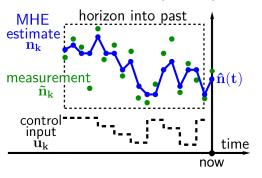
²Nikolas Geroliminis, Jack Haddad, and Mohsen Ramezani. *IEEE Transactions on Intelligent Transportation Systems* 14.1 (2013), pp. 348–359.


MFD-based control literature

approaches	related works (nonexhaustive)
optimal control	Daganzo 2007
multivariable PID	Keyvan-Ekbatani 2012,
	Aboudolas 2013, Kouvelas 2017
model predictive	Geroliminis 2013, Hajiahmadi 2013
control (MPC)	Zhou 2017, Ni 2019
reinforcement learning	Zhou 2021, Jiang 2023,
	Li 2024, Yu 2025

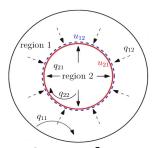
some unexplored directions:

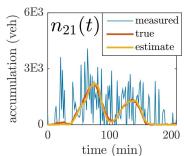
- ▶ joint state estimation and control
- integrating perimeter and routing actuation
- control under uncertainty


MPC with perimeter actuation³

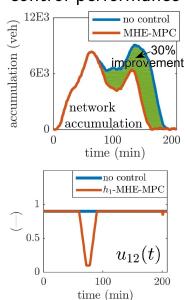
 $\label{eq:minimize} \begin{array}{ll} \text{minimize} & \text{total time spent} \\ \text{subject to} & \text{current measurement, constraints} \\ & & \text{MFD-based model} & (\mathbf{\dot{n}} = \mathbf{f}(\mathbf{n}, \mathbf{q}, \mathbf{u})) \end{array}$

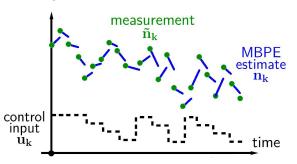
³Nikolas Geroliminis, Jack Haddad, and Mohsen Ramezani. *IEEE Transactions on Intelligent Transportation Systems* 14.1 (2013), pp. 348–359.


Moving horizon estimation (MHE)⁴

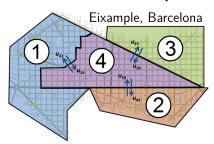

 $\begin{array}{ll} \mbox{minimize} & \mbox{tradeoff (process vs. meas. noise)} \\ \mbox{subject to} & \mbox{past measurements, constraints} \\ \mbox{MFD-based model} & (\dot{\mathbf{n}} = \mathbf{f}(\mathbf{n},\mathbf{q},\mathbf{u})) \end{array}$

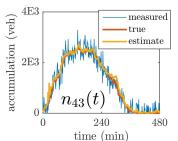
⁴Isik Ilber Sirmatel and Nikolas Geroliminis. *IEEE Transactions on Intelligent Transportation Systems* 21.12 (2019), pp. 4983–4994.


Simulation results (macroscopic)

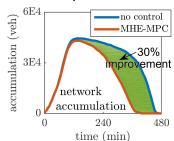

estimation performance

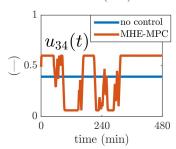
control performance


Model-based parameter estimation⁵

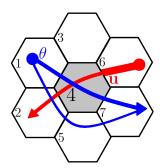

 $\label{eq:minimize} \begin{array}{ll} \text{minimize} \\ \text{parameters} \end{array} \quad \text{tradeoff (process vs. meas. noise)} \\ \text{subject to} \quad \text{recorded measurements, constraints} \\ \quad \text{MFD-based model} \quad (\mathbf{\dot{n}} = \mathbf{f}(\mathbf{n}, \mathbf{q}, \mathbf{u})) \end{array}$

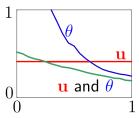
⁵Isik Ilber Sirmatel and Nikolas Geroliminis. *2020 European Control Conference (ECC)*. IEEE. 2020, pp. 408–413.


Simulation results (microscopic)

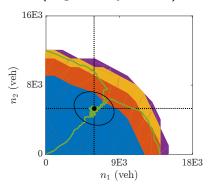


estimation performance

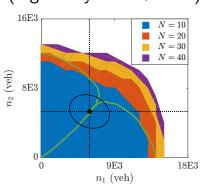



control performance

Perimeter and routing actuation MPC⁶

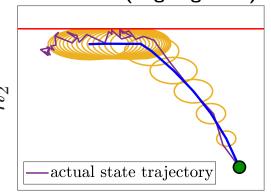

x-axis: driver compliance y-axis: total time spent

 $\begin{array}{ll} \mbox{minimize} & \mbox{total time spent} \\ \mbox{subject to} & \mbox{measurement}, & \mbox{input constraints} \\ \mbox{dynamical model} & (\dot{\mathbf{n}} = \mathbf{f}(\mathbf{n}, \mathbf{q}, \mathbf{u}, \theta)) \end{array}$


⁶Isik Ilber Sirmatel and Nikolas Geroliminis. *IEEE Transactions on Intelligent Transportation Systems* 19.4 (2018), pp. 1112–1121.

Stability of MPC for MFD systems⁷

domain of attraction (regulatory MPC)



domain of attraction (regulatory MPC+MHE)

⁷Isik Ilber Sirmatel and Nikolas Geroliminis. *Control Engineering Practice* 109 (2021), p. 104750.

Robust nonlinear MPC (ongoing work)

 n_1

minimize input

nominal tracking cost

subject to current measurement, robustified constraints MFD-based uncertain model, tube dynamics

Conclusion

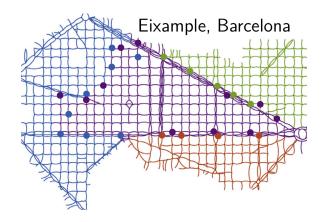
contributions:

- ► MBPE, MHE, and MPC with MFDs
- perimeter and routing actuation

results:

- ► MHE-MPC → control under noise
- lacktriangleright routing ightarrow control under low compliance

ongoing work:


- ▶ parameter estimation and model validation
- ightharpoonup robust nonlinear MPC ightarrow safe recovery

future work:

- modeling and control in mixed traffic
- ► hierarchical and distributed control

Discussion

sirmatel.github.io/seminar.pdf

12 km², \sim 600 intersections, \sim 1500 links (28 controlled intersections shown as dots)