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A Coverage Control-based Idle Vehicle Rebalancing
Approach for Autonomous Mobility-on-Demand

Systems
Pengbo Zhu, Isik Ilber Sirmatel, Giancarlo Ferrari-Trecate, Nikolas Geroliminis

Abstract—As an emerging mode of urban transportation,
Autonomous Mobility-on-Demand (AMoD) systems show the
potential in improving mobility in cities through timely and
door-to-door services. However, the spatiotemporal imbalances
between mobility demand and supply may lead to inefficiencies
and a low quality of service. Vehicle rebalancing (i.e., dispatching
idle vehicles to high-demand areas), is a potential solution for
efficient AMoD fleet management. In this paper, we formulate
the vehicle rebalancing problem as a coverage control problem
for the deployment of a fleet of mobile agents for AMoD
operation in urban areas. Performance is demonstrated via
microscopic simulations representing a large urban road network
of Shenzhen, China. Results reveal the potential of the proposed
method in improving service rates and decreasing passenger
waiting times.

Index Terms—Autonomous mobility-on-demand systems, cov-
erage control, vehicle rebalancing, taxi fleet control

I. INTRODUCTION

THE continuous expansion of modern urban space and
worldwide increasing population density in mega-cities

lead to rapidly growing mobility demand. Addressing this
problem exclusively via private vehicles is not sustainable
owing to the increase in congestion and emissions. Moreover,
public transportation alone cannot satisfy the need for timely,
comfortable, and door-to-door mobility services. New trends in
shared transportation are seen to have the potential to change
the landscape and understanding of mobility. Mobility-on-
Demand (MoD) systems (such as Uber, Lyft, and Didi) are
promising solutions for providing passengers with efficient
and fast service by deploying a group of coordinated vehicles
serving ride requests within city areas. Using autonomous
vehicles as MoD fleet (Autonomous Mobility-on-Demand,
AMoD) is expected to improve upon these solutions [1].

The rapid adoption of MoD systems creates great challenges
for city mobility operators and policymakers as there is limited
information on the decision trends, safety implications, impact
on vehicle ownership, and the effect of travel patterns on
congestion. Furthermore, Transportation Network Companies
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(TNCs) are trying to attract more demand from other modes
(e.g., taxis and buses) by offering shorter waiting times via
using larger fleets, which can cause significant delays in the
network due to a large number of circulating vehicles without
passengers [2]. Thus, efficient MoD fleet management is an
important direction for research, as it can enable TNCs to
achieve the same service quality with smaller fleets, leading
ultimately to less congested networks and thus shorter delays
for all participants of urban mobility. Many studies have been
investigated focusing on different aspects of MoD systems, for
example, vehicle-sharing [3], routing [4], dynamic fare and
pricing [5], and fleet sizing [6]. Moreover, in recent years,
there has been an increasing interest in the spatial rebalancing
problem of MoD fleets.

Asymmetry between origin and destination distributions
of trips and non-uniform passenger demand for rides in
different districts create discrepancies between actual and
desirable spatial distributions of MoD fleets. For example, in
the morning, people will typically travel from their houses
to work, and in the evening, the trips will mostly be in the
opposite direction. Obviously, more trips will begin or end
around central business districts while relatively few will be in
rural areas. Thus, proactively relocating idle vehicles to high-
demand areas in real-time (i.e., vehicle rebalancing) can have
significant improvements on MoD system performance [7],
[8]. Nowadays, most TNCs use applications on mobile phones
to receive requests from passengers and assign these orders to
drivers [2]. Since a passenger will not wait indefinitely to be
picked up, and drivers might refuse to answer a low-profit
request, the imbalance of supply and demand can lead to long
passenger waiting times and high cancellation rates, harming
service quality. In MoD systems, there is a clear advantage in
deploying vehicle rebalancing algorithms to achieve efficient
operation by sending idle vehicles to districts with current
or future high demand. Most literature and applications for
rebalancing mainly focus on car-sharing and bike-sharing
systems with much smaller fleet sizes [9], [10]. Bike-sharing
systems are relatively easy to operate due to the size of bikes
allowing a single mini-van to relocate a large number of bikes
simultaneously [11], [12]. The management of car-sharing
systems has been addressed at the strategic, tactical, and
operational levels. For comprehensive reviews on these three
planning levels, see [13]. The strategic and tactical decision
levels relate primarily to station location [14], [15], fleet sizing
[16], and staff sizing [17]. At the operational level, most of
the emphasis has been put on devising methods to redistribute
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vehicles in the system. However, the relocating of sharing
bikes or cars mostly happens once per day at midnight, thus
such methods are not suited for the real-time rebalancing of
MoD systems.

Methods for MoD system management have been receiving
increasing attention in the literature. In [18], by partitioning
city districts into small areas (denoted as stations), a high-load
case is presented to deploy a number of vehicles at each station
for an AMoD system. Stations are modeled as vertices of a
graph and a rebalancing policy is applied between vertices.
A fluid discrete-time approximation model is introduced and
an optimization approach is presented for steering the system
to equilibrium [19], [20]. Model predictive control (MPC)
approaches are employed to determine the optimal rebalancing
policy in [21], [22], while [23] provides proof of stability
within an MPC framework. [24] utilizes both historical and
real-time data to build a prediction model. In [4], the rebal-
ancing problem is described as an integer linear programming
problem to match vehicles with passengers and balance the
fleet. For shared MoD systems, a model-free reinforcement
learning scheme is proposed to offset the imbalance in [25],
while it has the risk of dispatching more vehicles than needed
to an area. In most of the previous literature, a centralized
controller is considered to operate the fleet. Moreover, as most
works are based on region/station level, partitioning the city
area into a limited number of virtual stations is required as a
preprocessing step [26].

The application of advanced control methodologies is re-
ceiving attention for efficient management of traffic networks
(see, e.g., [27]). For multi-agent systems, motion coordination
problems have been investigated, which automatically dis-
tribute a fleet of mobile agents (such as autonomous vehicles
or mobile robots) to carry out certain tasks in a bounded
environment (e.g., rendezvous maneuver [28], task allocation,
pattern formation [29]). Coverage control methods have been
investigated to find the spatial configuration of agents that
optimize a prescribed cost [30]. By assuming each mobile
agent has a uniform circular sensing footprint, [31]–[33] focus
on maximizing area coverage over the region of interest.
The purpose of [34] is to minimize the sum of the demand-
weighted distance between the agent and all points in its
covered area. In [35], nonlinear dynamics of mobile agents
were considered by using model predictive control schemes.
Additionally, the coverage control problem has been expanded
to consider constraints such as collision avoidance [36], energy
consumption [37], and limited communication range [38]. The
majority of previous works are based on dynamic Voronoi
partition, whose Voronoi generators are the current positions
of agents. In [34], Lloyd’s algorithm [39] is used as a classic
approach to drive agents to converge to a Centroidal Voronoi
Configuration (CVC), with the center of mass of each Voronoi
cell (i.e., centroid) coinciding with its generator [40]. The
aforementioned works focus only on agents moving in a
continuous Euclidean space. By considering a more practical
setting, [41] and [42] use graph Voronoi partition [43] to
represent a complex non-convex spatial environment.

There is great potential in applying coverage control to
AMoD systems, as it can be operated in a distributed way

with each agent computing its own control action, specifying
better scalability properties compared to centralized schemes
[44], [45]. Without pre-partitioning of the city area, the rebal-
ancing position control can be made more precise via node-
level (instead of region/station level) rebalancing. Furthermore,
coverage control can run in real-time which is suitable for
continuously allocating idle vehicles according to current idle
fleet size and demand conditions.

Building upon our earlier conference work [46], this paper
provides the following contributions:

1) To the best of our knowledge, it describes the first attempt
at applying coverage control [34] to a real-time vehicle fleet
rebalancing problem. The proposed method enables efficient
AMoD system operation via dispatching idle vehicles towards
high-demand areas, even the number of active vehicles in-
volved in coverage is continuously changing due to passenger
drop-offs and pick-ups. Furthermore, we validate the perfor-
mance of the proposed method across various imbalance levels
in trip origin and destination distribution, as well as different
controller sampling times.

2) We extend the coverage control method to graphs (via
[42]). This is important for the practical implementation of
the proposed algorithm in urban road networks that invariably
have a graph structure (while the original coverage control
method involves a continuous space). The performance of
these two methods is compared from different perspectives,
e.g., computational complexity, implementation requirements,
and so on.

3) We propose two kinds of upper-level controllers for
choosing a subset of the idle vehicle fleet to hold position. This
is required for reducing excessive rebalancing travel distance,
e.g., back-and-forth motion, which might be caused by exactly
following the coverage control actions in continuously chang-
ing traffic conditions. Using such an approach can mitigate
the adverse effects of unnecessary traffic congestion and fuel
consumption.

The remainder of the paper is organized as follows: Math-
ematical preliminaries of the coverage control method are
introduced in Section II. Details of applying coverage control
to vehicle fleet rebalancing are provided in Section III. In
Section IV, simulation results, obtained using an MoD system
simulator and synthetic scenarios with different imbalance
levels, verify the proposed methods can answer more trip
requests with less waiting time. Then, Section V considers
the application of coverage control on the graph instead of on
the continuous space. In addition, two controllers for deter-
mining active idle fleet size are introduced in Section VI, and
some results are provided showcasing their operations. Finally,
Section VII provides conclusions and potential directions for
future work.

II. MATHEMATICAL PRELIMINARIES

In this section, we state the mathematical preliminaries
and definitions of Voronoi partition and centroidal Voronoi
configuration [40], and recall the control algorithm ‘move-
toward-the-centroid of each Voronoi cell’ proposed in [34].
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A. Voronoi Partition

Consider a bounded convex set Ω ⊂ ℜ2. A number of
n mobile agents are deployed, whose positions are X =
{x1,x2, ...,xn},xi ∈ Ω and their movements are constrained
inside Ω. A naturally complete partition of Ω is the Voronoi
partition, which gives a tessellation related to the responsibility
area for an agent (Voronoi cell). Each cell consists of all points
q in Ω that are closer to agent xi than to any other agent. It
is defined as

Vi(xi) = {q ∈ Ω : ∥xi − q∥ ≤ ∥x j − q∥,∀ j ̸= i}. (1)

where ∥ · ∥ is the Euclidean norm and xi is called the gen-
erator/seed of the Voronoi cell Vi(xi) (as an example, Vi(xi)
and Vj(x j) are shown as blue polygons in Fig. 1). A Voronoi
partition V = {V1,V2, . . . ,Vn} has the property that

n⋃
i=1

Vi = Ω, int{Vi}∩ int{Vj}= /0, ∀i ̸= j, (2)

where int{Vi} denotes the interior of Vi.

𝑥!
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Fig. 1: Illustration of Voronoi partition.

B. Centroidal Voronoi Configuration

A continuous integrable function φ : Ω→ℜ is termed a dis-
tribution density function and used for representing a measure
of information or the probability of occurrence of an event at
each point in Ω. For each Voronoi cell Vi, i ∈ {1,2, . . . ,n}, the
center of mass (i.e., centroid) is defined with respect to the
density function φ as

C(Vi) =

∫
q∈Vi

qφ(q)dq∫
q∈Vi

φ(q)dq
, (3)

If the position of each agent xi, i ∈ 1,2, . . . ,n is simultane-
ously located at its centroid, the corresponding pair (V,X) is
called centroidal Voronoi configuration [40].

C. The Centroidal Coverage Control Law

The coverage objective function H: Ω→ℜ can be formu-
lated as follows,

H(X ,V ) =
n

∑
i=1

∫
q∈Vi

f (∥xi−q∥)φ(q)dq, (4)

where f : [0,∞)→ ℜ is a nondecreasing differentiable cost
which describes how the coverage performance degrades with
the distance ∥xi− q∥ between an agent and a given point q.
As an example, one can set f (x) = x2, which is generally used
in facility location problems [34].

We assume that agent i ∈ {1,2, . . . ,n} obeys the integrator
dynamics,

ẋi = ui, (5)

where the agent velocity ui ∈ R2, i∈ {1,2, . . . ,n} is the control
input, which is computed as follows

ui =−kV (xi−C(Vi)), kV > 0. (6)

It is proved in [34] that a local optimum of coverage objective
H will be achieved under Eq. (6), which makes the multi-agent
system converge to the centroidal Voronoi configuration.

III. PROBLEM FORMULATION AND METHOD OVERVIEW

We consider an AMoD system consisting of a fleet of
taxis, all of which are autonomous vehicles (AVs) having
identical capabilities of sensing, communicating, computing
and controlling their own motion. Moreover, we assume that
the AVs have an unlimited communication range and thus they
can detect any other adjacent taxis accurately. This is feasible
technologically since the TNC platform can collect their real-
time GPS coordinates and occupancy status. In this work, we
assume that each AV can serve only one passenger at a time (or
a unit of passengers with the same origin and destination, thus
being functionally the same as a single passenger). Therefore
the AV has the following three occupancy states:
• Idle (empty) vehicle: The vehicle is not carrying a pas-

senger and is thus cruising/waiting for a passenger;
• Passenger-assigned: The vehicle is matched with a pas-

senger and is moving to the passenger’s origin position
to pick up the passenger;

• Passenger-carrying: The vehicle has picked up its passen-
ger and is moving to the passenger’s destination position
to drop off the passenger.

The transitions between these occupancy states are illustrated
in Fig. 2 .

Idle

Pax-assigned Pax-carrying

Matched-up 
with pax

Pick up pax

Drop off pax

cruising

Fig. 2: Finite-state machine schematic of an autonomous taxi.
(‘Passenger’ is abbreviated as ‘Pax’ for brevity.)

The focus of this work is on developing a control algorithm
for the efficient spatial rebalancing of the set of idle vehicles
of an AMoD fleet. The algorithm is based on the coverage
control algorithm proposed for robotic systems in [34], with
the following intuitive reasoning: The pick-up task at a point
q∈Vi in the Voronoi cell Vi should be executed by the vehicle
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closest to q, which is exactly the vehicle i by definition of
Voronoi cell. Furthermore, the density function φ of coverage
control is utilized here to describe the spatial intensity of
mobility demand in the AMoD operation scenario.

A. Coverage control for Vehicle Rebalancing (CVR)

By implementing Eq. (3), the city area Ω is raster-
ized/discretized as a set of pixels, denoted as Ω̂. Let |Â|
stand for the number of pixel centers within the discretized
area Â. Then the weighted centroid can be computed over the
discretized Voronoi cell V̂i (see Section 2.2 in [47]) as

C(V̂i) =
∑q∈V̂i

q̂φ(q̂)

∑q∈V̂i
φ(q̂)

, (7)

where q̂ are the pixel centers. Computing Eq. (7) has a
complexity of O(|V̂i|), while the worst case can be O(|Ω̂|).
To limit the computational time, in contrast to [34], we
additionally assume that each agent can cover a circular area
with a limited radius r (shown as the gray circles in Fig. 1). For
instance, the area covered by vehicle i (shown as the yellow
disk in Fig. 1) is as follows

Si(xi,r) = {q ∈Ω : ∥q− xi∥ ≤ r}. (8)

At the same time, with the Voronoi partition, the actual
area covered by vehicle i is Wi =Vi∩Si. For instance, for the
example situation in Fig. 1, for vehicle i (shown at the point
xi), Wi is the same as Si (yellow area), while for vehicle j, Wj
is different to S j (as shown by the purple area). Computing
the centroid of Ŵi then has a complexity of O(|Ŵi|) (which is
O(|Ŝi|) in the worst case). Similarly to the objective function
(4) considered in [34], we formulate the coverage objective
function H regarding r-limited Voronoi partition as follows,

H(X ,W ) =
n

∑
i=1

∫
q∈Wi

∥xi−q∥2
φ(q)dq, (9)

where W = {W1,W2, ...,Wn}.
For a region Wi ⊂ℜ2, if we consider the probability density

function φ as a mass density function, then the mass M(Wi)
is equal to

∫
Wi

φ(q)dq. The centroid C(Wi) is defined by (3)
and the polar moment of inertia J(Wi,xi) are given by:

J(Wi,xi) =
∫

q∈Wi

∥xi−q∥2
φ(q)dq. (10)

By still assuming the dynamics in (5), the control law for
each vehicle i is defined as

ui =−kW (xi−C(Wi)), kW > 0. (11)

This control law guides every vehicle to move toward the
centroid of Wi with a speed kW

||xi−C(Wi)||2
. In our discrete-time

implementation, the coverage objective (9) is renewed at each
time step according to the current empty vehicle coordinates,
and the control action (11) is applied over a sampling period
∆T . As per Appendix A, any positive value of kW guarantees
a decrease of the objective function. Thus, even the value of
speed may vary due to traffic congestion levels at different time
steps, it does not violate the objective function’s decreasing.

For the sake of brevity, the specification of the time step k is
omitted in this section.

From the AMoD operation point of view, the control law
operates the fleet by matching idle vehicle availability and trip
demands via dispatching more empty vehicles to high-demand
areas. Since it can be used for spatiotemporal deployment of
idle vehicles of an AMoD fleet, we call the method Coverage
control-based idle Vehicle Rebalancing (CVR) approach.

Remark 1: For each vehicle, the control algorithm has two
steps: 1) Using local information (positions of its spatial neigh-
bors and itself), compute the covered area Wi and weighted
centroid C(Ŵi) (as an approximation of C(Wi) according to
Eq. (7)). 2) Move towards C(Ŵi). Therefore, the CVR method
can be implemented in a distributed way (apart from the
need for a central planner communicating demand density
information to each vehicle). Moreover, the computation of
the centroid scales linearly with |Ŵi| and therefore is suitable
for real-time operations, enabling the rebalancing action for
each agent to be updated in relatively short time intervals.
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Fig. 3: A sequence of screenshots of vehicle rebalancing
with CVR in action. ‘o’ marks the current positions of the
vehicles, while ‘+’ indicates their rebalancing goal positions
(i.e., Voronoi centroids). The trajectories of these vehicles are
shown by dotted lines.

Remark 2: Eq. (11) controls the vehicle position to follow
gradient descent flow (see Appendix A for further details),
which is not guaranteed to find the global optimum [34]. The
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configuration is thus also affected by the initial position of
agents. In contrast to previous works such as [34], due to
the number of idle vehicles changing over time (as they can
be assigned to, or drop off a passenger anytime), here the
coverage control problem is not static. Instead, the proposed
method involves solving at each time instant a different cover-
age control problem, the dimensions/structure (due to changing
idle fleet size) and data (due to changing demand intensity) of
which can change. For instance, we present a scenario where
the system starts with 6 vehicles in Fig. 3, At Time step =
21, one vehicle (represented by a red diamond) gets assigned
to a passenger, and is no longer considered in the Voronoi
partition. Consequently, the remaining vehicles adjust and aim
to converge to a new configuration based on a fleet size of
5. The final figure illustrates that the vehicle configuration
dynamically adapts according to the current availability of
vehicles. Notably, the intended goal of the proposed method
is not to monotonically decrease the coverage objective and
eventually converge to a locally optimal configuration. Instead,
the proposed method attempts to continually steer the idle
fleet towards configurations with a lower coverage value, thus
enabling the AMoD fleet to operate with greater potential to
have short response times, thereby increasing service quality.

B. Method Implementation

We use an undirected graph G = (Q,E,w) to represent the
city map, where E is the set of road links and Q is the set of
vertices/nodes, i.e. intersections on city road, N is the number
of nodes in G, and the edge weights w are the road length
between two nodes. The proposed method is tested on an
AMoD simulator replicating the urban road network of Luohu
and Futian districts in Shenzhen, China. The network consists
of N = 1858 intersections and 2013 road links.

Fig. 4: A snapshot of the simulator. The idle/empty, passenger-
assigned, and passenger-carrying AVs are dots in blue, green,
and red, respectively. A demo video is available on YouTube:
https://youtu.be/JlBs0CfuJ c.

Fig. 4 shows a snapshot of the simulator. The blue dots
stand for idle vehicles, and the gray contours denote the
area covered by each vehicle (from the perspective of the
coverage control objective function). In a practical setting, all

vehicles should move along real urban roads and can only take
turns or change their directions at the upcoming intersection.
However, the calculated centroid C(Ŵi) may not be located
on the roads that the vehicles can access. To circumvent
this problem, instead of the computed exact centroid, we use
the intersection/node closest to the centroid in the Euclidean
metric as a simple approximation. Then, the implementation
of the proposed CVR algorithm is provided in Algorithm 1.

Algorithm 1: Implementation of CVR.
At a time step T (k),
for each idle vehicle i, i ∈ {1,2, . . . ,nidle(k)} (with

current position xi(k), upcoming intersection is
Qnext(i,k) ∈ Q, and its current rebalancing
destination Qdest(i,k) ∈ Q. do

Communicate: Transmit its position and obtain
the position information of its adjacent neighbors.

Compute: Compute its Voronoi partition and the
centroid of its r-limited Voronoi cell C(Ŵi,k).
Find the nearest intersection Qdest(i,k+1) ∈ Q.

Update: Qdest(i,k+1)←C(Ŵi,k)
Move: The vehicle moves towards Qdest(i,k+1)

with speed given by Eq. (15).
end

IV. EXPERIMENT SETUP AND SIMULATION RESULTS

Supply and demand imbalances commonly exist in MoD
systems, which leads to inefficient operation. These imbal-
ances can be caused by the asymmetry between trip origin and
destination distributions and heterogeneous demand levels in
different regions. Thus, we will discuss the Origin-Destination
(O-D) imbalance and the imbalance magnitude in Section IV-A
and Section IV-B, respectively, and describe the passenger
requests setting we use to test Algorithm 1 in Section IV-C.
Then, the sensitivity analyses over different imbalance scenar-
ios and fleet sizes are presented.

A. O-D imbalance

The historical data contains 199,819 taxi trips (collected
during a 24-hour period) from the city of Shenzhen, China,
consisting of their origin-destination pairs. In order to present
the impact of the spatial discrepancy between trip origin
and destination distributions, we consider both distributions
to be fixed in the following discussions. Gaussian Mixture
Models (GMMs) are used to estimate the spatial distributions
of origins and destinations separately, as shown in Fig. 5. The
origin distribution represents where the passengers would like
to start their trips. At the same time, this continuous GMM of
origin distribution is used as a demand density function φ of
the coverage control algorithm, which satisfies the condition∫

q∈Ω
φ(q)dq = 1.

Comparing Fig. 5a and Fig. 5b, it can be seen that these
two distributions are different. Customer orders will gradually
change the spatial distribution of supply (i.e., idle vehicle
availability), since vehicles will move to respond to trip

https://youtu.be/JlBs0CfuJ_c
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(a) Origin distribution.

(b) Destination distribution.

Fig. 5: Contour map of Estimated Gaussian mixture models
for the trip origin and destination distributions. More orders
begin/end at the darker colored/red areas.

requests and tend to stay in the vicinity of drop-off (i.e.,
destination) points. Therefore, without any intervention, the
supply distribution will shift towards the destination distribu-
tion (while ideally, it should match the origin distribution),
resulting in severe spatiotemporal imbalances between supply
and demand.

B. Imbalance parameter

In the considered AMoD system, all requests start and end
at intersections, i.e., nodes on the graph. Using the historical
data, we define the total number of pick-up requests at node
i as Ro(i), where i = 1,2, ...,N. Then the probability that a
pick-up happens at node i is as follows

po(i) =
Ro(i)

∑
N
i=1 Ro(i)

. (12)

where ∑
N
i=1 po(i) = 1. Similarly, we can get the probability of

drop-off at node i as pd(i).
By defining the maximum of po as po

max, we can write

p̃o(i) = po
max− po(i). (13)

Then we normalize p̃o(i) over all nodes to have ∑
N
i=1 p̃o(i) = 1.

We use p̃o as a complement of po, in order to generate
synthetic destination distributions from origin distributions
through a parameter γ ∈ [0,1] (representing O-D distribution
balance) as follows

pd
γ (i) = γ · pd(i)+(1− γ) · p̃o(i), (14)

where ∑
N
i=1 pd

γ (i) = 1. When γ = 1 the generated destination
distribution pd

γ is the same as the original one, i.e., pd , while
the smaller γ is, the more imbalance there is between the
generated destination distribution and the origin distribution.
When γ = 0, pd

γ is the same as p̃o, which has a shape
complementary to po in that it generates the maximal O-D
imbalance.

In addition, to test the effect of γ , we compute the Hellinger
distance [48] between pd

γ and po, which is a metric that
takes values in [0,1] and it measures the degree of similarity
between two probability distributions; when the distance is
0 the two distributions are identical and when it is 1 they
are the furthest apart. The Hellinger distances between the
generated destination distributions with different values of γ

and the origin distribution are shown in Table I.

TABLE I: The Hellinger distances between pd
γ and po for

various values of γ

γ 0 0.25 0.5 0.75 1
Hellinger distance 0.2840 0.2391 0.1929 0.1421 0.0773

In the following sections, the origins of passenger demands
are sampled from the origin distribution po from historical
data, while the destination distribution follows pd

γ generated
by the above procedure.

C. Simulator Setup and Performance Metrics

In our simulations, we assume that the congestion is homo-
geneous across the urban area of interest, thus a macroscopic
fundamental diagram (MFD, see [49]) is used to describe
the relationship between the accumulation of vehicles m (i.e.,
number of all vehicles consisting of private ones and AVs) and
the space-mean speed v (in m/s), as follows

v(m) =


36e

(
−29m
72000

)
, m≤ 4320,

6.31−2.33(m−4320), 4320 < m≤ 7200,
0, m > 7200.

(15)
The MFD is derived from traffic data, which can be col-

lected through various kinds of sensors including loop detec-
tors [50], GPS on vehicles [51], [52], drone-mounted cameras
[53] and so on. Then the values of numerical parameters are
estimated via curve fitting or system identification. Vehicle
moving speeds are then emulated based on this MFD, given
the vehicle accumulation. Note here, except extreme situations
where network speed is zero (which is not included in the
following simulation results), the magnitude of v is always
greater than 0, which naturally satisfies the speed requirement
in (11).

Similar to real MoD systems (such as Uber and Car2Go),
the simulator match-up scheme obeys the ‘first-come-first-
served’ policy. A request can be described by a tuple including
the origin, the destination, and the time when the request is
sent out. The matching process is described in Algorithm 2.
The passenger waiting time consists of two parts: Time spent
waiting to be matched with a vehicle, and the time spent
waiting to be picked up. In reality, people have a limited



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. X, NO. X, JANUARY 2023 7

amount of tolerance to these, which we denote as tmtol and
tptol respectively. When passenger j sends out a request at
time t0( j), the system will search for available idle vehicles,
calculate the estimated pick-up time t̂p( j) (according to current
moving speed) for the spatially closest vehicle, and then match
the passenger with this vehicle if the t̂p( j) value is appropriate.

Algorithm 2: Matching process in AMoD system
Initialization: Nreq = 0,Norder = 0
for each passenger j (with the request sent out at time
t0( j)) do

Nreq← Nreq +1
while T (k)< t0( j)+ tmtol( j) min do

Compute: Find the spatially closest idle
vehicle, compute pick-up time t̂p( j)

if t̂p( j)− t0( j)≤ tptol( j)
Match the passenger with this vehicle,
Norder← Norder +1,
Break

else
k← k+1

end
end
Return: Nreq,Norder

If t̂p( j)− t0( j)> tptol( j), then the passenger keeps waiting
for being matched for tmtol( j) min. At (t0( j)+ tmtol( j)) min,
if there are still no vehicles available that can respond to this
passenger, she/he will cancel this request and leave the system.
In this case, we assume that the passenger will choose to
drive her/his private vehicle to travel, which will increase the
accumulation m in the road network, leading to congestion.

If t̂p( j)−t0( j)≤ tptol( j), this vehicle will be assigned to the
passenger (see the green dots in Fig. 4). Once the passenger
and a vehicle are matched, we assume that this request cannot
be canceled anymore and the ‘request’ becomes an ‘order’
for the vehicle. The vehicle then travels toward the origin
position of the passenger to pick her/him up. After picking
up the passenger, it will travel to the passenger’s destination
(see the red dots in Fig. 4). All traveling routes between any
two nodes are pre-computed by the Floyd-Warshall algorithm
[54] which yields the shortest path between any two nodes
on a graph. The passenger-assigned and passenger-carrying
vehicles have no contribution towards the coverage objective,
while the proposed control method will continuously balance
the idle vehicles to gravitate towards the high-demand areas,
improving idle vehicle availability. Once a passenger arrives
at her/his destination, the vehicle becomes idle again and
joins the group of vehicles operated by the coverage control
algorithm.

Considering that each vehicle might move in the network
at various speeds at different times, we denote the time
when passenger j is actually picked up as tp( j), and the
total number of successfully completed orders as Norder. The
average waiting-to-be-picked time can be computed as:

t̄w =
∑

Norder
j=1 [tp( j)− t0( j)]

Norder
. (16)

We define completion rate as the percentage of requests that
are successfully completed as Norder/Nreq × 100%. The t̄w
value has biases due to considering only the answered requests
(i.e., orders) while ignoring the waiting-for-matching time of
cancelled requests, so we introduce the average system time
by giving a time penalty for the canceled requests as follows

t̄sys =
∑

Norder
j=1 (tp( j)− t0( j))+∑

Nreq−Norder
j=1 β · tptol( j)

Nreq
, (17)

where (Nreq−Norder) is the number of canceled requests for
the whole simulation, β is a weight parameter representing
the time value penalty for cancelled orders (with β > 1).
Note that the value of β does not affect the positive linear
relationship between β and t̄sys, and it is chosen as β = 1.5
for the simulations. We choose a constant tolerance time for all
passengers that tmtol( j) = 1 min and tptol( j) = 5 min. Further
simulation studies (omitted here for brevity) revealed that the
system performance stops improving for r values larger than
r = 1000m, thus we choose this value for the simulations.

D. Results and Analysis

In order to illustrate the influence of trip origin and destina-
tion imbalances, we generate synthetic scenarios with different
values of imbalance parameter γ . Besides the spatial distribu-
tion, the arrival process of the passenger requests follows a
Poisson distribution with piece-wise constant rates with a low-
high-low demand profile where each period lasts for 1 hour.
During the first and third hours (i.e., the low-demand periods),
around 600 requests are issued per hour, while the arrival rate
doubles during the second hour (i.e., the high-demand period).
In total, around 2400 demand requests are introduced in a 3-
hour simulation, and we assume the spatial distributions of
requests are fixed. The baseline method, where vehicles stay
at the destination of their last order until they are matched
with their next passengers, is denoted as the ‘Do-nothing’
policy. The proposed method CVR is compared with the Do-
nothing policy using a set of 30 randomly generated simulation
scenarios, and the results are provided in Fig. 6, showing the
request completion rates, average waiting times and system
times, with varying values of γ and fleet size, for the two
methods. The solid lines present the mean value for the 30
runs, while percentiles are shown in shades for varying degrees
(25%,50%,75%, and 90%, respectively). The coverage control
algorithm is operated every ∆T = 10 s throughout this paper,
unless otherwise specified.

According to Fig. 6, for all simulations, our method can
improve system performance by yielding lower waiting and
system times, and is able to serve more trips. These results
indicate the potential of the proposed method in improv-
ing AMoD system performance by allocating more vehicles
around high-demand areas and dynamically rebalancing their
positions after dropping off passengers. When γ = 1, both
methods do well due to the origin and destination distributions
being similar and the situation requires little rebalancing
effort. Even if there are no significant differences between
the two methods regarding the completion rate (i.e., only an
improvement of around 3%), our method shows substantially
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(a) Request completion rates

(b) Average waiting times t̄w

(c) Average system times t̄sys

Fig. 6: Comparison for various γ and fleet size values.

lower waiting and average system times, especially with large
fleet sizes. With lower γ values, the performances of both
methods decline as expected. With an increased imbalance,
there will be more orders with origins and destinations further
away from each other, causing the coverage control algorithm
to require more time to steer the vehicles from their last
destinations towards the high-demand areas. However, overall
the simulations show that the proposed method yields better
results than the baseline.

From the results, considering the varying fleet size values,
it can be seen that the performance metrics improve for both
methods with increased fleet size as expected. Furthermore,
the proposed method can achieve similar or better performance
with smaller fleets. For example, in Fig. 6b, for γ = 0.5 and
a fleet size of 100, the proposed method can yield an average
waiting time t̄w of around 160 s, indicating an improvement
of about 11% compared to the baseline of 180 s. In other
words, to achieve a t̄w around 160 s, the baseline requires a
fleet size of about 150, which is 50 vehicles more than what
the proposed method needs to achieve the same performance.
Given that larger fleets are problematic due to increased costs
for the TNCs and can also create additional congestion in

the urban network, the capability of the proposed method in
achieving good performances with smaller fleets is a desirable
feature for practical impact.

V. EXTENSION AND COMPARISONS

Although CVR on continuous space is easy to implement,
the continuous space assumption suffers from several disad-
vantages: Firstly, the coverage control algorithm requires a
continuous demand density function. Estimating a continu-
ous density function from discrete historical trip data can
introduce errors. Furthermore, areas accessible by a vehicle
are confined to road networks in practical scenarios. Thus,
the coverage region of one vehicle is non-circular and non-
convex in shape (which can be thought of as the intersections
and roads surrounding the vehicle), in contrast to the circular
disk assumed in the original coverage control method (as
described in Section II). Furthermore, the centroid calculated
with the continuous Voronoi partition might be outside of
any intersection on the city map, thus the closest intersection
is used as an approximate position of the exact centroid.
These steps inevitably introduce approximation inaccuracies.
To overcome these problems, as the city map can be modeled
as a graph, the original coverage control algorithm can be
extended to coverage on graph algorithm (following [42])
using the graph Voronoi partition method of [55].

A. Problem Reformulation

The urban road network is modeled as an undirected graph
G = (Q,E,w). For the vehicle i, whose current position is xi,
the Voronoi tessellation of graph is given by the cells [55]

V G
i (xi) = {q ∈ Q : d(xi,q)≤ d(x j,q)),∀i ̸= j}, (18)

where d(A,B) stands for the shortest distance between nodes
A and B in graph G.

Considering concerns related to computational complexity,
similar to the continuous case where an r-limited Voronoi
cell is used to depict the covered area of each agent, the
graph coverage control scheme is implemented by bounding
the graph Voronoi cell within rG. Taxi traveling on dense urban
roads can be approximated by motion on a grid map, to relate
the coverage on the graph to continuous space, here we choose
rG =

√
2r, which measures the coverage radius r in Eq. (8)

on the grid map by Manhattan Distance, i.e., the shortest path
that a taxicab would take between city intersections), which
is widely used in path planning [56]. For the covered nodes
of each idle vehicle i, we only consider the nodes within its
graph Voronoi cell which are not further than rG limits from
its position xi. Therefore, we obtain the ‘covered area’ of each
idle vehicle on the graph as

SG
i (xi,rG) = {q ∈ Q : d(q,xi)≤ rG}. (19)

The rG-limited graph Voronoi cell of vehicle i is then W G
i =

V G
i ∩SG

i . A discrete version of the objective function Eq. (9)
can be formulated as:

H(X ,W G) =
n

∑
i=1

JG
i (xi,W G

i ) =
n

∑
i=1

∑
q∈W G

i

d(xi,q)2
φ

G(q), (20)
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where the demand density φ G is a probability mass function
over the nodes in G, which is the same po introduced in
Section IV-A. It satisfies

∑
q∈Q

φ
G(q) = 1. (21)

According to [57], the centroid of rG-limited graph Voronoi
can be computed by an integer optimization problem as

C(W G
i ) = arg min

q∈W G
i

JG
i (xi,W G

i ). (22)

If the feasible solution of Eq. (22) is not unique, we randomly
select one element from the solution set.

Fig. 7 is a snapshot of the rG-limited graph Voronoi par-
tition. For instance, for the vehicle in xi, the covered nodes
are shown as blue squares, and the graph centroid is denoted
as C(W G

i ). This idle vehicle i will travel towards C(W G
i )

following the shortest path calculated by the Floyd-Warshall
Algorithm. We name this control algorithm as CVR-graph.

𝒙𝒊

𝒙𝒋

𝒙𝒌

𝑪(𝑾𝒊
𝑮)

𝑪(𝑾𝒌
𝑮)

𝑪(𝑾𝒋
𝑮)

Fig. 7: A snapshot of partition on graph of urban road. For
each vehicle (round markers), the square markers in the same
color around it stand for the graph nodes which are closer to it
than to any other within a distance of rG. The diamond marker
illustrates the position of its centroid where this idle vehicle
should move to.

Remark 3: In contrast to the CVR on a continuous space,
there is no need to estimate the demand density with CVR-
graph. The partition on the graph can cover non-convex
regions as required for practical coverage. The centroid can
also be directly obtained by Eq. (22) without approximation.
The disadvantage of the CVR-graph method is the increased
computational effort. On the graph of urban roads, the edge
weights are not the same as they reflect the length of road
segments. For this non-tree graph, computing the centroid is
the most time-consuming part, and the core of it is computing
the distances between one node q and all the other nodes in
W G

i (one-to-all distances) which requires O(|W G
i |log|W G

i |) by
Dijkstra’s algorithm. Please note, by slight abuse of notation,
in this section, |AG| stands for the number of all nodes on
graph ‘covered’ by AG.

B. Results and Comparative Analysis

We introduce a comparison of our approaches with a fleet
rebalancing strategy detailed in [3]. This strategy focuses
on relocating idle vehicles to intersections where there are
pending or unassigned requests. The strategy operates through

linear programming (LP) that aims at minimizing the total
travel time between pairs of vehicles and requests, subject to
the condition that either all pending requests or all idle vehicles
are allocated. While our proposed methods, CVR and CVR-
graph, control the fleet in a distributed manner, the LP strategy
from [3] operates in a centralized way and requires real-time
access to information regarding all unassigned requests.

An experiment is carried out under origin-destination trip
demand imbalances (with γ = 0.5) and a fleet size of 150.
Around 2400 requests are introduced in a 3-hour simulation
to compare the performances of CVR on the continuous map
and on the graph. The control sampling time of all policies
is set as ∆T = 10 s. The performance metrics are listed in
Table II.

TABLE II: Performance metrics of different policies

completion rate waiting time system time
(%) (s) (s)

CVR-graph 82.7 125.7 181.9
CVR 82.7 127.4 183.1

LP [3] 80.8 150.8 208.1
Do-nothing 72.3 157.6 238.5

Compared with both LP and Do-nothing policies, CVR-
graph yields better results: Answering more requests, at the
same time, gives a clear reduction in average waiting and
system time. The results demonstrate CVR-graph can help to
improve the efficiency of the AMoD system.

Furthermore, we compare CVR-graph to CVR proposed in
Section III. In Fig. 8, the trajectories of vehicles under CVR
are depicted. The vehicles move towards high-demand regions.
Notably, Vehicles 9 and 10 show back-and-forth movements,
potentially due to centroid approximation errors. For instance,
while the actual centroids (red ‘+’) for Vehicle 9 at time steps
8 and 16 are proximal, both of them lie outside intersections
on the graph. Then the closest intersections (orange crosses)
are used as approximate centroids, i.e., their rebalancing des-
tinations. It results in a change of destination, causing Vehicle
9 to move westward first (as seen at Time Step 8), reverse its
course (Time Step 16), and then head west again (Time Step
24). A similar pattern is observed with Vehicle 10. In Fig. 9,
the trajectories of vehicles operating under CVR-graph are
presented. In contrast to CVR, there is no observed oscillatory
movement, thanks to the exact centroid computation.

According to the performance metrics as listed in Table II,
the CVR-graph is seen to yield similar performance to CVR,
with a slightly shorter waiting time. This might be attributed
to the studied city map, where the distribution of graph nodes
is dense and roughly uniform. Consequently, approximating
this road network with a continuous space turns out to be
a reasonable approximation, as can be evidenced by Fig. 8
showing that the exact centroids (red) and the approximate
centroids (orange) are close. Although CVR and CVR-graph
yield similar performances in studied dense road networks,
discrepancies between these two methods could become more
significant when vehicles are operated in dedicated lanes or
utilize only a specific subset of the road network.
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Fig. 8: A sequence of screenshots with CVR in action. ‘o’
are the current positions of vehicles, red ‘+’ show their exact
Voronoi centroids, and orange ‘+’ are approximate centroids
(true rebalancing destination/goal positions). The dotted lines
represent their trajectories.

Fig. 9: A sequence of screenshots with CVR-graph in action.
‘o’ are the current positions of vehicles, blue ‘+’ show their
centroids of graph Voronoi cell. The dotted lines represent
their trajectories.

To sum up, CVR involves approximations that can lead
to inaccuracies and potentially unnecessary oscillatory move-
ments. In contrast, CVR-graph, though computationally rel-
atively more intensive, provides more accurate and practical
guidance for vehicle deployment.

C. Performance across different controller sampling time

We test the performance of our methods, CVR and CVR-
graph, and the LP policy for a set of control input update
period (i.e., ∆T , controller sampling time) values ranging
between 10 and 300 seconds. The results are shown in Fig. 10.

It can be seen that performance deteriorates for all methods
as the controller sampling time increases, because the system
becomes less responsive and fewer vehicles are rebalanced to
high-demand regions as expected. Our methods consistently
outperform the LP policy, addressing more requests and re-
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Fig. 10: Performances of CVR, CVR-graph, LP policy and
Do-nothing policy as functions of controller sampling time.

ducing waiting times across all tested scenarios. LP policy
bases its control actions on the unfulfilled orders from the
previous control sampling period, thus a longer sampling time
results in less timely actions. For short controller sampling
times ranging from 10s to 60s, CVR and CVR-graph show
comparable completion rates, average waiting, and system
time. However, when the sampling time is extended, CVR-
graph demonstrates superior performance over CVR. While
the performance metrics of answer rate and average waiting
time for CVR and CVR-graph deteriorate as the sampling time
increases, they remain consistently better than those of the LP
policy and Do-nothing policy.

VI. ACTIVE IDLE FLEET SIZE ADAPTATION

Outside of rush hours, there might be many idle vehicles
circulating without serving any passengers. Furthermore, the
proposed coverage control algorithm might force idle vehicles
to execute many short back-and-forth movements due to
small changes in idle fleet size inside short time intervals.
The resulting empty kilometers traveled cause fuel waste,
air pollution, and congestion. We therefore investigate two
different methods for selecting a subset of idle vehicles not to
be relocated. By contrast, the rest of the idle vehicles (which
are actively repositioning themselves according to the coverage
control law) are termed ‘active idle’ vehicles. The goal of these
methods is to reduce empty travel distances caused by mostly
unnecessary small rebalancing actions.

There exist two questions in the idle fleet size selection
problem: 1) How many vehicles should be relocated for
different demand levels, and 2) which ones should be chosen
for relocation?

Firstly, for each idle vehicle i (with current position xi),
the polar moment of inertia of its covered area is given by
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Eq. (10). Similarly, we can define the polar moment of inertia
of its Voronoi cell as

J(Vi,xi) =
∫

q∈Vi

∥xi−q∥2
φ(q)dq. (23)

To guarantee service quality, we prefer to select vehicles
that are located in high-demand areas and ask them to hold
their positions. In a map with non-uniform density, with the
proposed coverage control scheme, more idle vehicles will
gather around high-demand regions (see Fig. 4). This implies
that a vehicle located at a high-demand area usually has a
higher value of J(Wi,xi)/J(Vi,xi), since owing to the nature
of Voronoi partition, Wi will cover more area of the whole Vi.
Note that both ‘not-relocated idle’ and ‘active idle’ vehicles
should be considered for Voronoi partitioning (the contours of
their covered areas are shown in gray in Fig. 11).

Fig. 11: A partial screenshot of the simulator. The ‘active idle’
vehicles are shown as blue dots, while the ‘not-relocated idle’
vehicles are shown as gray squares.

A. Active idle fleet size adaptation controllers

We introduce two different approaches to determine how
many vehicles should not be relocated: 1) CVR-α sim-
ply chooses α percent of idle vehicles, 2) CVR-PI uses a
proportional-integral (PI) controller which collects and uses
the passenger average waiting time in a time window of the
immediate past.

1) CVR-α:
At each time step k, the number of idle vehicles is nidle(k).

For CVR-α , ⌊nidle(k)× α⌋ idle vehicles with the largest
J(Wi,xi)/J(Vi,xi) value will be selected and stopped at their
current positions, where ⌊x⌋ is the greatest integer less or equal
to x. Here we test α = 0%,20%,40%,60%,80%,100%. For
α = 0%, one has the same setting as CVR, which never lets
any idle vehicle become ‘not-relocated’. The case α = 100%
corresponds to the ‘Do-nothing policy’, which means the
empty vehicle stops at its last destination where it drops off
the last passenger until it is matched with the next passenger.

2) CVR-PI:
The goal is to design an adaptive method to determine how

many vehicles should hold their position. A PI-controller using
a constant reference signal is introduced here to that end.

The fleet size adaptation controller is operated at a constant
frequency, which is chosen as once every ∆T ′ = 5 min. At

each time step k′, we collect and calculate the average waiting
time t̄w(k′) and the average number of empty vehicles n̄idle(k′)
in the last ∆T ′ minutes. The output signal can be obtained as
y(k′) =

√
t̄w(k′) · (nAV − n̄idle(k′)), where nAV is the number of

all vehicles in the AMoD system.
The error signal is defined as the difference between a

constant reference and the output as

err(k′) = yre f − y(k′). (24)

Then, the discrete PI controller is given by

∆unot(k′) = Kp · err(k′)+KI

k

∑
i=1

err(k′), (25)

and unot(k+1) can be calculated as

unot(k′+1) = unot(k′)+∆unot(k′). (26)

In the next time step, ⌊unot(k′+ 1)⌋ idle vehicles with the
largest J(Wi,xi)/J(Vi,xi) values are selected as ‘not-relocated
idle vehicles’, and the rest as ‘active’. More information on
tuning the parameters of CVR-PI can be found in Appendix
B.

B. Simulation Results

Here we define a performance metric for evaluating the
proposed schemes: the accumulated rebalancing distance,
which is the total traveling distance caused by relocating active
idle AVs. Obviously, the rebalancing distance of Do-nothing
policy is always 0 due to all empty vehicles stopping at their
last destination.

Next, we present a simulation experiment over 3 hours
under origin-destination trip demand imbalances γ = 0.5 with
a fleet size of 150 vehicles. We compare the performances
of our proposed methods with the Do-nothing policy. The
performance metrics are provided in Table III. For CVR-PI,
we have set Kp = 0.2,KI = 0.4 and yre f = 60.

TABLE III: Performance of fleet size adaptation methods.

completion t̄w t̄sys accu. rebalancing
rate (%) (s) (s) distance (km)

CVR(α = 0%) 82.6 127.0 183.2 4804.8
CVR-PI 82.4 139.4 194.2 2314.7
CVR-α = 20% 82.2 132.5 188.9 3890.1
CVR-α = 40% 80.9 135.5 195.5 2960.0
CVR-α = 60% 80.1 137.6 199.7 2031.6
CVR-α = 80% 78.6 146.5 211.5 1047.5
Do-nothing 73.1 155.1 234.5 0

It can be seen from Table III that CVR yields the highest
completion rate and the shortest waiting time. However, since
all vehicles are active and relocated all the time, the accu-
mulated rebalancing distance is the highest. For CVR-α , for
higher values of α , the waiting time becomes larger and the
completion rate tends to decrease slightly. Generally speaking,
the fleet size should be chosen properly to strike the desired
trade-off between waiting time and extra traveling caused by
rebalancing. It is interesting to note, however, that the CVR-PI
can finish almost as many orders as CVR with the rebalancing
distances reduced by 51.8%. Furthermore, compared to the
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Fig. 12: Comparison of CVR, CVR-α ,and CVR-PI.

Do-nothing policy, it can still yield significant improvements
in waiting time and system time. These results indicate that
the CVR-PI method is capable of achieving a good balance
between system performance and rebalancing costs.

To demonstrate the simulation process more precisely, the
results in Fig. 12a depict the time evolution of the number of
vehicles in various operating states (i.e., not-relocated idle,
active idle, passenger-assigned, and passenger-carrying). In
Fig. 12b and Fig. 12c, the solid lines present the CVR method,
while results of the CVR-α are shown by dotted lines and
CVR-PI in brown dashed lines.

During the first and second hours, it can be seen from the
evolution of vehicle states that the coverage control approach
helps the system as the sum of blue and gray areas (i.e., the
number of active idle vehicles + the number of not-relocated
idle vehicles) of all algorithms are smaller than Do-nothing
in Fig. 12a. It indicates that the proposed methods are able
to operate the fleet more efficiently, as a larger amount of
vehicles is actively serving passengers most of the time. On
the other hand, the Do-nothing policy operates with a larger
amount of idle vehicles, which manifests itself as a greater
amount of canceled orders, as can be seen from Fig. 12c.

Fig. 12a shows that, at the beginning and the end of low-
demand periods, CVR-PI method keeps more idle vehicles
static; while during the high-demand hour, all vehicles are
actively doing coverage control which guarantees completion
rates as good as CVR, however with reduced rebalancing
distances.

In Fig. 12c, during rush hours, a steeper upward tilt to the
curve for Do-nothing policy can be observed. After the high-
demand period, the number of canceled orders for the Do-
nothing policy still keeps increasing, while except for CVR-
α = 80% which produces a few more canceled orders, the
other methods can manage to respond to new requests almost
without any more cancellations.

VII. CONCLUSIONS

In this paper, we proposed the application of coverage
control to rebalance vehicle fleets for autonomous Mobility-
on-Demand systems. Being a model-free approach, it provides
a relatively simple way to give online node-level guidance
for idle vehicle fleets. For compensating spatiotemporal im-
balances in demand and supply, our proposed method can
dynamically rebalance the spatial distribution of idle vehicles
to serve more trips with reduced waiting times. To treat the
non-circular areas covered by vehicles in road networks due
to road geometry, we extended the original coverage control
algorithm to the graph Voronoi partition. Considering the
empty traveling distance due to the repositioning process,
we proposed different approaches to automatically manage
the active idle fleet size. Our coverage control algorithms
are tested on a discrete city map using real road network
geometry and trip data from the city of Shenzhen. The
performances of the proposed approaches are compared with
a linear programming-based rebalancing approach and a ‘Do-
nothing’ policy, and the results show clear advantages.
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Simulation results depend on a pre-computed static de-
mand density function which is estimated from historical
data. However, the demand patterns are highly influenced by
weather and other external effects in reality, also demand data
can be skewed by measurement errors. Future research will
consider using time-varying demands based on real-time trip
request data for fleet rebalancing. For reference on integrating
estimating density function with coverage control, see works
[58], [59]. Additionally, it is more practical to consider a mixed
system consisting of both autonomous vehicles and human
drivers, with the latter potentially having inaccuracies in fol-
lowing the rebalancing control actions. Then besides system-
wide metrics, investigating the profit of individual drivers as
discussed in [60] is one interesting topic. Another limitation of
the current control schemes is that the fleets lack coordination
with other regions in the network. One way to solve this
problem is to develop a hierarchical control architecture. It
can benefit from efficient coordination between the actions
of upper-level controllers which operate the aggregated traffic
components (for example, how many idle vehicles should
travel from one sub-region to another) and those of the lower-
level controllers based on the proposed CVR approaches.
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APPENDIX A
PROOF OF COVERAGE CONTROL LAW

This section provides the proof that the coverage control
law (11) can decrease the objective function H(X ,W ) and
asymptotically steer the agents to the centroids of their r-
limited Voronoi cells. The proof is largely inspired by [34].

According to the parallel axis theorem, similarly to [34],
we can rewrite the polar moment of inertia as

J(Wi,xi) = J(Wi,C(Wi))+M(Wi)∥xi−C(Wi)∥2, (27)

where J(Wi,C(Wi)) is the polar moment of inertia with respect
to the centroid C(Wi).

From Eq. (9) and Eq. (27), the objective function and its
partial derivative with respect to xi can be expressed as:

H(X ,W ) = ∑
n
i=1J(Wi,xi)

= ∑
n
i=1J(Wi,C(Wi))+∑

n
i=1M(Wi)∥xi−C(Wi)∥2,

∂H(X ,W )

∂xi
= 2M(Wi)(xi−C(Wi)).

(28)
From the first-order condition ∂H(X ,W )/∂xi = 0, one has

that the optimal configuration involves positioning all agents
at the centroids of their respective r-limited Voronoi cells, i.e.
xi =C(Wi).

The control algorithm should minimize the coverage cost
H by properly allocating n agents in space. To achieve this

goal, the control law (11) makes the position of each agent xi
follow a gradient descent flow.

For the system given by (5) and (11), the objective function
H is guaranteed to decrease for ∀kW > 0 because

dH
dt

= ∑
n
i=1

∂H(X ,W )

∂xi

dxi

dt
=−2kW ∑

n
i=1M(Wi)∥xi−C(Wi)∥2 < 0.

(29)

APPENDIX B
PI CONTROLLER REFERENCE TUNING

In this section, we provide the parameter tuning process of
the PI controller for the proposed CVR-PI method. With y(k′)
reflecting the service level in the last 5 minutes, when y(k′) is
small the fleet of active vehicles can be deemed to fulfill the
current requests. In this case relocation of idle vehicles is not
highly beneficial, thus when y(k′)≤ 90, all idle vehicles will
hold their current positions. Otherwise, i.e., when y(k′)> 90,
we use a PI controller to track a constant reference yre f to
determine how many vehicles should not relocate. Next, we
describe the result of a sensitivity analysis that we performed
for tuning yre f .

Under the same experiment settings of Section IV, we use
different values of yre f (from 30 to 120 with an increment
of 10 ) and collect the performance metrics. The tuning
criterion (denoted as θ ) is a normalized combination of
two performance criteria, and is computed by summing up
the normalized average system time (scaled to [0,1]) and
normalized rebalancing trips (scaled to [0,1]). The results are
shown in Fig. 13.

30 40 50 60 70 80 90 100 110 120 130

reference singal (unit: (sec  veh)0.5)

0.6

0.7

0.8

0.9

1

Fig. 13: Tuning parameter for the reference signal

From Fig. 13, the optimal value of yre f is 60, thus this value
is chosen for the simulations. Choosing yre f values beyond
120 results in all vehicles being determined as active during
the whole simulation period, so those values are excluded
from the analysis. For the tuning of KP and KI the same
procedure is repeated and the parameter values are chosen
according to their resulting θ values. Note that this tuning
procedure involves choosing the parameters for a specific
AMoD operation scenario. More general parameter-tuning
methods will be studied in future research.

REFERENCES

[1] G. Zardini, N. Lanzetti, M. Pavone, and E. Frazzoli, “Analysis
and control of autonomous mobility-on-demand systems,” Annual
Review of Control, Robotics, and Autonomous Systems, vol. 5,
no. 1, p. null, 2022. [Online]. Available: https://doi.org/10.1146/
annurev-control-042920-012811

https://doi.org/10.1146/annurev-control-042920-012811
https://doi.org/10.1146/annurev-control-042920-012811


IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. X, NO. X, JANUARY 2023 14

[2] C. V. Beojone and N. Geroliminis, “On the inefficiency of ride-sourcing
services towards urban congestion,” Transportation Research Part C:
Emerging Technologies, vol. 124, p. 102890, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0968090X20307907

[3] J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, and
D. Rus, “On-demand high-capacity ride-sharing via dynamic trip-
vehicle assignment,” Proceedings of the National Academy of
Sciences, vol. 114, no. 3, pp. 462–467, 2017. [Online]. Available:
https://www.pnas.org/content/114/3/462

[4] J. Alonso-Mora, A. Wallar, and D. Rus, “Predictive routing for au-
tonomous mobility-on-demand systems with ride-sharing,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2017, pp. 3583–3590.

[5] M. Nourinejad and M. Ramezani, “Ride-sourcing modeling and pricing
in non-equilibrium two-sided markets,” Transportation Research Part
B: Methodological, vol. 132, pp. 340–357, 2020, 23rd International
Symposium on Transportation and Traffic Theory (ISTTT 23).
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0191261518311500

[6] A. Wallar, J. Alonso-Mora, and D. Rus, “Optimizing vehicle distribu-
tions and fleet sizes for shared mobility-on-demand,” in 2019 Interna-
tional Conference on Robotics and Automation (ICRA), 2019, pp. 3853–
3859.

[7] A. Wallar, M. Van Der Zee, J. Alonso-Mora, and D. Rus, “Vehicle
rebalancing for mobility-on-demand systems with ride-sharing,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2018, pp. 4539–4546.

[8] K. Marczuk, H. Soh, C. L. Azevedo, D.-H. Lee, and E. Frazzoli,
“Simulation framework for rebalancing of autonomous mobility on
demand systems,” 2016.
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