
Idle-vehicle Rebalancing Coverage Control for Ride-sourcing systems*

Pengbo Zhu1, Isik Ilber Sirmatel2, Giancarlo Ferrari Trecate3, Nikolas Geroliminis1

Abstract— Ride-sourcing system can provide passengers with
fast and efficient service with a fleet of vehicles, while asym-
metry between origin and destination distributions of trips,
nonuniform passenger’s demand for rides in different districts
creates imbalances in the spatial distribution of these vehicles.
Thus proactively relocating idle vehicles to the high-demand re-
gions, also known as vehicle rebalancing is an emerging problem
that can have a significant improvement for the efficiency of
urban transportation. We formulate this problem as a coverage
problem for coordination and deployment of multiple mobile
agents in city scenarios, which vehicles can benefit from by
allocating them according to the different demand densities of
different city districts. A Voronoi-based control algorithm is
proposed by leveraging the local information of each vehicle.
The effectiveness of the proposed method is validated by a
simulator modeled on a real road map from Shenzhen, China.
Compared to baseline, our proposed method is able to serve
more trips with less passenger waiting time.

I. INTRODUCTION

Nowadays, the development of wireless communication
and the widespread use of smartphones have popularized
ride-sourcing services which revolutionizes the mobility in
urban areas. Such as Uber, Lyft and DiDi, Transportation
Network Companies(TNCs) provides an internet-based plat-
form for passenger demand and vehicle supply in real time.
They deploys a group of vehicles within city areas, serving
people’s requests for in-time and door-to-door rides.

However, the imbalance of demand and supply violates
the system efficiency. It can be caused by the asymmetry
between the trip origin and destination distribution and
the different demands for rides in different districts. As
a consequence of the unideal spatial distribution of ride-
sourcing vehilces, there is a long passenger waiting time
and a high cancellation rate. Thus the benefit of improving
the guidance or repositioning idle/empty vehicles is expected
to achieve efficiency and sustainability. And it is of great
interest to overcome this problem from a control point of
view that deploys coordinated control algorithms to rebalance
vehicles to districts with current or future high demand [1].

Although studies in ride-sourcing systems on price policy,
vehicle routing [2], fleet sizing [1] an vehicle-splitting[3]

*Research supported by NCCR Automation, a National Centre of Compe-
tence in Research, funded by the Swiss National Science Foundation (grant
number 51NF40 180545)

1 École Polytechnique Fédérale de Lausanne, Urban Transport Systems
Laboratory, 1015 Lausanne, Switzerland, pengbo.zhu@epfl.ch,
nikolas.geroliminis@epfl.ch

2 Trakya University, Department of Electrical and
Electronics Engineering, Control Section, Türkiye,
iilbersirmatel@trakya.edu.tr

3 École Polytechnique Fédérale de Lausanne, Dependable
Control and Decision Group, 1015 Lausanne, Switzerland,
giancarlo.ferraritrecate@epfl.ch

problems have been conducted by many authors, this spatial
vehicle rebalancing problem is still insufficiently explored.
On the other hand, most papers addresses the need for car-
sharing and bike-sharing systems [4], which has a large
rebalancing time interval(e.g., sharing-bikes are relocated by
mini-vans during the midnight once per day), so far only a
few in the ride-sourcing systems [3][5]. In [6], assuming
n vehicles are allocated at n stochastic median locations
to serve orders surrounding its Voronoi cell, a rebalancing
policy is introduced for light-load scenarios. [7] introduces a
fluid discrete-time approximation model and an optimization
approach. A model predictive control scheme is presented
to address constraints on vehicle availability in [8] and [9].
Also reinforcement learning algorithms has been applied in
[10]. In [11], empty autonomous vehicles are simply sent to
underserved areas. However, most of these works formulate
the system with a limited number of virtual stations and a
small fleet size, which is hard to be applied in large-scale
and door-to-door services, while in this paper, we can provide
node-level rebalancing position instead of the rather rougher
region-level ones.

In the past several decades, coverage control algorithm has
played an important role in multi-agent systems due to its
ability to coordinate and control simultaneously [12]. The ob-
jective of coverage control is to optimize a selected criterion,
e.g. minimize the energy cost [13] or maximize the covered
area [14], [15], [16]. The system is described in a predefined
environment, where mobile agents, such as UAVs, vehicles,
and robots, move around and react autonomously using local
information collected from their neighbors. Most of these
works are based on the Voronoi partition to determine an
optimal configuration of multiple agents over a bounded
area. Centroidal Voronoi configurations [17], the generators
of which coincide with the center of mass (i.e., centroid)
of each Voronoi cell, are widely used in location optimiza-
tion problems. Lloyd’s algorithm [18] provides a tractable
approach to compute the centroidal Voronoi configuration
and steers agents towards the centroids of their own cells.
However, the aforementioned works focus on continuous
environments (i.e., geographical spaces), where the mobile
agents can move in any direction. Considering a practical
setting, in this paper we extend these previous results by
applying a coverage control algorithm to a discrete map,
where the vehicles are moving along real urban roads and
can only change their directions at their next intersections.

To the best of our knowledge, this work constitutes the
first attempt at developing fleet balancing control systems
via application of the coverage control method. The fol-
lowing parts of this paper are organized as follows: Firstly,

© 2022 IEEE https://ieeexplore.ieee.org/document/9838069

https://doi.org/10.23919/ECC55457.2022.9838069

problem formulation for coverage control in continuous
environment are presented. The proposed method is first
examined in a simple simulator in continuous space with
constant speed for all vehicles, and then a simulator built on
a real mega-city map with discrete space is introduced. We
study the assumptions and approximations in the discrete
space operating environment for evaluating our proposed
method in a practical setting. Various simulation scenarios
employing different imbalance levels between the trip origin
and destination distribution are conducted. Passenger waiting
times and request completion rates are used for comparing
the performance of the proposed method with a baseline
without rebalancing. Finally, conclusions and potential future
steps are discussed.

II. PROBLEM STATEMENT

The coverage control problem is well-defined by a large
number of existing studies in robotic fields. The following
problem statement and control law formulation adapts these
works to a mobile vehicle system which is largely based
on reference [13] and [14], and the corresponding practical
meaning of variables existing in real transport networks are
explained.

A. Preliminaries

Assume that the region of interest Ω ⊂ ℜ2 is a convex
space. A probability density function ϕ : Ω → [0, 1) is a
continous integrable function which reflects the possibility of
occurence of event on each point in Ω in general localization
optimization problem. Specifically, here ϕ is utilized to
describe how much demand for rides is on each position
in the urban scenario. A number of n mobile agents or
moving vehicles are deployed whose position vectors are
X = {x1, x2, ..., xn}, xi ⊂ Ω, and the movements of
vehicles are constrained inside Ω. Each agent i is assumed
to cover a circular area with a limited radius r. We define
the covered area as S = {S1, S2, . . . , Sn}, where

Si(xi, r) = {q ∈ Ω : ∥q − xi∥ ≤ r}, (1)

where ∥·∥ is Euclidean norm, as the blue circular area shown
in Fig. 1c.

Distributed control algorithms have attracted much atten-
tions in recent research due to their computation efficiency
which only require local information. They can be imple-
mented on each agent to compute its own control actions
by communicating with its spatial neighbors. Considering
distributed coverage problems for a set of agents can be
addressed with help of Voronoi or Voronoi-inspired partition-
ing scheme, the Voronoi diagram is used here to completely
partition the environment Ω as

Vi(xi) = {q ∈ Ω : ∥xi − q∥ ≤ ∥xj − q∥,∀j ∈ In, j ̸= i},
i ∈ In (2)

as the orange area shown in Fig. 1c, with the property that⋃
i∈In

Vi = Ω, int{Vi} ∩ int{Vj} = ∅, ∀i ̸= j (3)

where int{Vi} denotes the interior of Vi. Voronoi diagram
can give a tessellation that the responsibility area for an agent
(Voronoi cell) is the area in Ω including all points that are
closer to it than any other agent.

As the duality of Voronoi diagram and Voronoi-weighted
Delaunay graphs, we can compute Voronoi cell Vi of agent
i only with its Delaunay neighbors Ni, which is defined as

Ni = {j ∈ In, j ̸= i : Vi ∩ Vj ̸= ∅}, i ∈ In. (4)

A performance function f : [0,∞) → ℜ is a differentiable
function which degrades with the distance between a agent
and a given position, i.e., ∥xi − q∥. Here we choose f(·) =
−∥·∥2. The goal is to maximize the covered area by all agents
while also taking the density function ϕ into account. Thus
the coverage objective function H:Ω → ℜ can be formulated
as follows,

H(X,W) = −
∑

i=1,2,...,n

∫
q∈Wi

∥xi − q∥2ϕ(q)dq (5)

where Wi = Vi ∩ Si, as the gray area shown in Fig. 1c.

B. Distributed Control Law Formulation

Proposition: The local maximum of H can be obtained
when Xi are located at centroids of their respective Voronoi
cells, i.e., the position of each agent xi simultaneously
satisfies two conditions: It is the the seed/generator of its
Voronoi cell, at the same time, it is located at its center
of mass(i.e., centroid). This critical partition P and points
configuration X for H is named as Centroidal Voronoi
Configuration [17].

Similarly, for a region Wi ⊂ ℜn, if we consider the
probability density function ϕ as a mass density function,
then the mass MWi , first moment LWi , centroid CWi , and
polar moment of inertia JWi,xi

can be obtained as follows
respectively,

MWi
=

∫
Wi

ϕ(q)dq, LWi
=

∫
Wi

qϕ(q)dq,

CWi =
MWi

LWi

,

JWi,xi
=

∫
Wi

∥xi − q∥2ϕ(q)dq.

(6)

According to parallel axis theorem, we can rewrite the
polar moment of inertia as

JWi,xi
= JWi,CWi

+MWi
∥xi − CWi

∥2, (7)

where JWi,CWi
is the polar moment of inertia of the region

Wi about its centroid CWi
.

Considering Eq.5 again, the objective function and its
partial derivative with respect to xi can be expressed as:

H(X,W) = −
∑

n
i=1JWi,xi

= −
∑

n
i=1JWi,CWi

−
∑

n
i=1MWi∥xi − CWi∥2,

∂H(X,W)

∂xi
= −2MWi(xi − CWi).

(8)

Obviously, solving ∂H(X,W)/∂xi = 0 leads to the con-
clusion that the optimal configuration involves positioning
all agents at the centroids of their respective Voronoi cells,
i.e. xi = CWi

. This optimal partition of environment and
critical agent positions yield the so called Centroidal Voronoi
Configuration.

By allocating n agents, the control algorithm should
maximize the coverage objective function H . To achieve this
goal, the control law proposed here makes agent position xi

follow a gradient descent flow. Let the first order derivative
of agent displacement as control input be as follows

dxi

dt
= ui. (9)

By LaSalle’s principle, it can be proved that when we set
the local control law as

ui = −kp(xi − CWi). (10)

will steer the agent team to converge to the centroidal
Voronoi configuration, where kp is a positive control gain.
We use a rasterized area to calculate the centroid [19].
Furthermore, when agent’s movement obeys the control law
in Eq.10, the objective function H can be guaranteed to
increase due to

dH

dt
=

∂H(X,W)

∂xi

dxi

dt
(11a)

= 2kp
∑

n
i=1MWi∥xi − CWi∥2 > 0. (11b)

Note that this control algorithm shows adaptability when
dealing with a dynamic system, e.g., when the empty vehicle
fleet size is changing with time due to departure or arrival
of vehicles, the control law can always allocate agents to the
optimal configuration for the current situation.

III. SIMULATION STUDY

A. Case Study I: Continuous map case

0 500 1000 1500 2000 2500 3000 3500 4000

x-coordinate (m)

0

500

1000

1500

2000

y
-c

o
o
rd

in
a
te

 (
m

)

(a) Demand density function

-
Q)

C
1000

0
0 u

I

>.
500

500 1000 1500 2000 2500

x-coordinate (m)

3000 3500 4000

(b) Initial configuration

𝑽𝒊

𝒙𝒊
𝑺𝒊

(c) Final configuration

Fig. 1: Continuous case study

In this simulation, mobile agents can move freely inside a
rectangle-shape continuous map with maximum speed vmax.
The discrete-time dynamics for each agent is

xi(k + 1) = xi(k) + Tui(k). (12)

Under the control law in Eq. 10, we add the speed
limitation to the agents. Let the agent move toward the
centroid of its Voronoi cell at its maximum speed vmax, then
the control input is

ui(k) = −vmax · (xi(k)− CWi(k))

∥(xi(k)− CWi
(k)∥

, (13)

where T is the sampling time.
A fleet of 25 vehicles are employed in this simulation with

random initial positions as shown in Fig. 1b. The demand
density function ϕ(q) follows a bimodal distribution, and its
values are illustrated by color gradient in Fig. 1a, where
the high demand areas are indicated with dark gray. Fig. 1b
and Fig. 1c show the initial and final fleet configurations,
respectively. As can be seen from the comparison between
Fig. 1b and Fig. 1c, the fleet positions converge from their
initial random positions to the centroidal voronoi configura-
tion with the proposed control law.

B. Case Study II: Discrete space case with Shenzhen network

1) Introduction for simulation architecture: Our proposed
control method is examined on a discrete space simulator
based on the urban road network of Shenzhen, China. The
network consists of 1858 intersections and 2013 road links.
Given a undirected graph G = (V,E) to represent the city
map, where E is the set of real roads and V is the set of
vertices, i.e. intersections for urban roads, and please note
here V is not Voronoi cell in Section II. More detailed
information can be found in [20].

2) Data preprocessing and generation: Collected in 24
hours from Luohu District in Shenzhen, the historical data
contains 199,819 trips consisting of the following: Origins,
destinations, and the time when passengers send out a request
for a ride. The demand level can be evaluated by the rate
of requests originating from each intersection. With suffi-
cient historical trip data, we can use the Gaussian mixture
model approach to estimate the origin distribution, i.e. the
continuous demand density function ϕ(·) required by our
control algorithm. Similar to the destination, the estimate
distributions are shown in Fig. 2

(a) origin distribution. (b) destination distribution.

Fig. 2: Estimated Gaussian mixture models for trip origin
and destination distributions.

To be able to generate simulation scenarios emphasizing
the difference between trip origin and destination distribu-
tions, we introduce an imbalance parameter γ. Assume that
the global maximum of the origin distribution is po,max, let

p′o(q) = po,max − po(q), q ∈ V, (14)

By normalizing over all points, we create an artificial
distribution p′o which has the maximum difference from the
origin distribution. Here, po(q) is the probability on q for
original origin distribution.

Then we can generate the destination distribution as fol-
lows,

p′d(q) = γ · pd(q) + (1− γ) · p′o(q), q ∈ V, (15)

where p′d(q) and pd(q) indicate the probability of generated
and original destination distributions respectively.

When γ = 1, the generated destination distribution is
equal to the original destination distribution. The smaller
the γ is, the more discrepancy is introduced between the
origin and generated destination distributions. When γ = 0,
the generated destination distribution has a shape that is
maximally different than the origin one.

3) Experimental Setup: The passenger requests are sam-
pled from the original origin distribution po, and generated
artificial destination distributions p′d with different γ values.
The time pattern of the requests follows a low-high-low
demand file where each period lasts 1 hour and about
2400 trip requests are introduced in a 3-hour simulation.
Fig. 3 shows a snapshot of the simulator. All vehicles move
along a discrete geographical space representing real urban
roads and can only stop or change their directions at next
intersections. The blue dots stand for idle vehicles, and the
gray circular disk is depicts the r-limited area covered (from
the perspective of the coverage control objective function) by
each vehicle. These empty vehicles always move following
their centroids at each time step. During our simulations,
it shows that the system performances are improved with
the increase value of r at first but will converge with a big
enough value around 1000m in the end. Considering the
computation load, a bigger value of r actually requires for
a larger scale of the demand density information, so we set
r = 1000m here.

Fig. 3: A snapshot of the simulator. The idle/empty,
passenger-assigned, and passenger-carrying vehicles are dots
in blue, green and red respectively. A demo video is available
on youtube : https://youtu.be/1TJapI8qtwI

Each passenger trip request has a maximum waiting
time tolerance wtol. When one passenger i sends out a
request at t0(i), the system will search for available idle

vehicles and calculate the estimated pick-up time tep(i) for
the nearest vehicle according to current moving speed. If
tep(i) − to(i) < wtol, this vehicle will be assigned to the
passenger(represented as a green dot on Fig. 3). It then
travels toward the origin position of the passenger to pick
her/him up; after picking up the passenger (represented as
a red dot on Fig. 3), it will travel to the destination. The
traveling path is computed by Floyd-Warshall algorithm [21]
which gives the shortest path between any two nodes in a
graph. The passenger-assigned (i.e., green) and passenger-
carrying (i.e., red) vehicles have no contribution towards
the coverage objective, while the proposed control method
will continuously balance the idle vehicles (i.e., blue; the
remainder of the vehicle fleet) in order to guarantee more
vehicles gravitate towards the high-demand areas. Therefore,
there can be a quick response for current and future requests.
Once a passenger arrives at her/his destination, the vehicle
becomes idle again and joins the group of vehicles operated
by the coverage control algorithm.

Considering that the vehicle might move in the network
with various speeds at different times, we denote the time
when passenger i is actually picked up as trp(i), and the total
number of successfully completed orders as N1. The average
waiting time can be computed as:

tw =

∑N1

i=1 t
r
p(i)− to(i)

N1
, (16)

However, if tep(i)− to(i) > wtol, then the passenger keeps
waiting for being matched for 1 min. At (t0(i) + 1) , if
there are still no vehicles available that can respond to this
passenger, this order is deemed as cancelled. In this case, we
assume that the passenger will choose to drive her/his private
vehicle to travel, which will increase the accumulation m in
the roads leading to congestion[20].

v(m) =

36e

(
−29m

72000
)
, m ≤ 4320,

6.31− 2.33(m− 4320), 4320 < m ≤ 7200,

0, m > 7200.
(17)

Considering the MFD obtained in [22] which expresses
a function between the network speed v(km/h) and accu-
mulation of private and ride-sourcing vehicles m(veh) in
Eq. (17), increasing the number of private vehicles leads to
a lower average speed. We can calculate the average system
time tsys as

tsys =

∑N1

i=1(t
r
p(i)− to(i)) +N2 · α · wtol

N
, (18)

where N2 is the number of canceled orders, N is the total
number of requests during the simulation time (with N =
N1+N2), α is a weight parameter representing the time value
penalty for cancelled orders. The percentage of successfully
completed requests (i.e., request completion rate) can be
found from 100%×N1/N . In the simulations and analysis,
we choose α = 1.5 and wtol = 5 minutes.

https://youtu.be/1TJapI8qtwI

4) Simulation results and analysis: In order to illustrate
the influence of trip origin and destination imbalances, we
create artificial scenarios with different levels of imbalance
parameter γ. Our method is compared with the baseline
method, where vehicles stay at the destination of their last
order until they are dispatched to their next passengers
(which we denote here as the ‘do-nothing policy’). Our
proposed method (shown in purple) is compared with the
baseline method (shown in blue) using a set of 30 randomly
generated simulation scenarios, and the results are shown
in Section III-B.4, evaluating the two methods on request
completion rates, average waiting times and system times,
with varying values of γ and fleet size. The solid lines
presents the mean value for the 30 runs, while percentiles
are shown in shades for varying degrees (25%, 50%, 75%,
and 90%, respectively).

(a) Request completion rates

(b) Average waiting times tw

(c) Average system times tsys

Fig. 4: Comparison for various γ and fleet size values.
For all simulations using various values of the origin

destination demand imbalance parameter γ, our method can
improve system performance by yielding lower waiting and
system times, and is able to serve more trips. This verifies
that the coverage control scheme can efficiently balance the
spatial distribution of idle vehicles by allocating more ve-
hicles around high-demand areas and dynamically rebalance
their positions after dropping off passengers.

When γ = 1, both methods do well due to the origin
and destination distributions being similar, requiring little
rebalancing where the do-nothing approach is a good enough

choice. While for the request completion rate for γ = 1, no
significant differences occur between the two methods (i.e.,
only an improvement of around 3%), our method shows
substantially decreased waiting and average system times,
especially with a large fleet size. With lower γ values the
performances of both methods decline as expected. With an
increased imbalance, there will be more orders with origins
and destinations further away from each other, causing the
coverage control algorithm to require more time to steer the
vehicles from their last destinations towards the high-demand
areas. However, the results show that our proposed method
yields better results than the baseline.

From the results with varying fleet size values, it can
be seen that the performance metrics improve for both
methods with increased fleet size as expected. Furthermore,
our proposed method can achieve similar or even better
performance with 25 or fewer vehicles. For example, in
Fig. 4b, for γ = 0.5 and a fleet size of 100, our method can
yield an average waiting time of around 160 s compared to
the baseline with 180 s, indicating an improvement of about
11%; to achieve a tw around 160 s, the baseline requires
a fleet size about 150, which is 50 vehicles more than our
proposed method.

(a) proposed method (b) do-nothing policy

(c) No. of accumulated canceled orders

Fig. 5: Comparison of different states of vehicles and number
of canceled orders

Furthermore, without loss of generality, one simulation
experiment under origin-destination trip demand imbalances
γ = 0.5 with a fleet size of 150, 2400 requests in 3 hours
is presented here to demonstrate the improvement of our
proposed method compared with the do-nothing policy. The
results in Fig. 5 depict the trajectories of vehicle numbers
with various operating (i.e., idle, passenger-assigned, and
passenger-carrying) states together with the number of can-
celled orders. The solid lines present our proposed method
while results of the do-nothing policy are shown by dotted
lines. The vehicle state trajectories in Fig. 5a indicate that the
proposed method is able to operate the fleet more efficiently
as a larger amount of vehicles are actively serving passengers

for most of the time. On the other hand, the do-nothing
policy operates with a larger amount of idle vehicles, which
manifests itself as a greater amount of cancelled orders, as
can be seen from Fig. 5c. During the hour 1-2, a steeper
upward tilt to the curve for the do-nothing policy can be
observed. And after the high-demand period, the number
of canceled orders for the do-nothing policy still keeps
increasing, while our proposed one can manage to respond to
new requests almost without any more cancellations. From
Table I we can see that the proposed method can increase
completed requests, while decreasing average waiting and
system times, showing substantial improvement in system
operation. Overall, the results indicate that the ability of
coverage control in keeping the vehicles in advantageous
locations for demand responsiveness, thus succeeding to have
more vehicles matched to passengers in a timely manner,
translates to superior performance over the do-nothing pol-
icy, suggesting strong potential for practice in ride-sourcing
system management.

TABLE I: Performance metrics of two methods

proposed do-nothing improvement
method policy

completion rate (%) 82.89 73.19 13.25 % ↑
average waiting time (s) 132.46 173.88 23.82 % ↓
average system time (s) 186.80 247.91 24.65 % ↓

IV. CONCLUSION

In this paper, we proposed the application of the coverage
control method (from the robotics and motion planning liter-
ature) to rebalance vehicle fleets for ride-sourcing systems.
For countering spatiotemporal imbalances in the origins
and destinations of trip demands, our proposed method can
dynamically rebalance spatial distribution of idle vehicles to
serve more trips with less waiting time. Our coverage control
algorithm is tested on both continuous and discrete space
simulators using real road network geometry and trip data
from the city of Shenzhen and its performance is compared
with a do-nothing policy. The results currently rely on a
prior knowledge of a static demand density function. Thus
in future work, a method to estimate time-varying demands
from real-time data can be investigated. Furthermore, as the
ride-splitting service can answer more requests with smaller
fleet size, research on pooling problems is a research priority.

REFERENCES

[1] A. Wallar, M. Van Der Zee, J. Alonso-Mora, and D. Rus, “Vehicle
rebalancing for mobility-on-demand systems with ride-sharing,” in
2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2018, pp. 4539–4546.

[2] J. Alonso-Mora, A. Wallar, and D. Rus, “Predictive routing for
autonomous mobility-on-demand systems with ride-sharing,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2017, pp. 3583–3590.

[3] J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, and
D. Rus, “On-demand high-capacity ride-sharing via dynamic trip-
vehicle assignment,” Proceedings of the National Academy of
Sciences, vol. 114, no. 3, pp. 462–467, 2017. [Online]. Available:
https://www.pnas.org/content/114/3/462

[4] A. Faghih-Imani, R. Hampshire, L. Marla, and N. Eluru, “An
empirical analysis of bike sharing usage and rebalancing: Evidence
from barcelona and seville,” Transportation Research Part A: Policy
and Practice, vol. 97, pp. 177–191, 2017. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0965856416311648

[5] B. Boyacı, K. G. Zografos, and N. Geroliminis, “An integrated
optimization-simulation framework for vehicle and personnel
relocations of electric carsharing systems with reservations,”
Transportation Research Part B: Methodological, vol. 95, pp.
214–237, 2017. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0191261515301119

[6] M. Pavone, K. Treleaven, and E. Frazzoli, “Fundamental performance
limits and efficient polices for transportation-on-demand systems,” in
49th IEEE Conference on Decision and Control (CDC), 2010, pp.
5622–5629.

[7] M. Pavone, S. L. Smith, E. Frazzoli, and D. Rus, “Load balancing
for mobility-on-demand systems,” in Robotics: Science and Systems,
2011.

[8] F. Miao, S. Lin, S. Munir, J. A. Stankovic, H. Huang, D. Zhang,
T. He, and G. J. Pappas, “Taxi dispatch with real-time sensing
data in metropolitan areas: A receding horizon control approach,”
in Proceedings of the ACM/IEEE Sixth International Conference on
Cyber-Physical Systems, ser. ICCPS ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 100–109. [Online].
Available: https://doi.org/10.1145/2735960.2735961

[9] R. Zhang, F. Rossi, and M. Pavone, “Model predictive control of au-
tonomous mobility-on-demand systems,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA), 2016, pp. 1382–
1389.

[10] J. Wen, J. Zhao, and P. Jaillet, “Rebalancing shared mobility-on-
demand systems: A reinforcement learning approach,” in 2017 IEEE
20th International Conference on Intelligent Transportation Systems
(ITSC), 2017, pp. 220–225.

[11] A. Carron, F. Seccamonte, C. Ruch, E. Frazzoli, and M. N. Zeilinger,
“Scalable model predictive control for autonomous mobility-on-
demand systems,” IEEE Transactions on Control Systems Technology,
vol. 29, no. 2, pp. 635–644, 2021.

[12] S. Martinez, J. Cortes, and F. Bullo, “Motion coordination with
distributed information,” IEEE Control Systems Magazine, vol. 27,
no. 4, pp. 75–88, 2007.

[13] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” IEEE Transactions on Robotics and
Automation, vol. 20, no. 2, pp. 243–255, 2004.

[14] S. Papatheodorou, Y. Stergiopoulos, and A. Tzes, “Distributed area
coverage control with imprecise robot localization,” in 2016 24th
Mediterranean Conference on Control and Automation (MED), 2016,
pp. 214–219.

[15] S. Papatheodorou and A. Tzes, Theoretical and Experimental Collab-
orative Area Coverage Schemes Using Mobile Agents, 11 2018.

[16] S. Papatheodorou, A. Tzes, K. Giannousakis, and Y. Stergiopoulos,
“Distributed area coverage control with imprecise robot localization:
Simulation and experimental studies,” International Journal of
Advanced Robotic Systems, vol. 15, no. 5, p. 1729881418797494,
2018. [Online]. Available: https://doi.org/10.1177/1729881418797494

[17] Q. Du, V. Faber, and M. Gunzburger, “Centroidal voronoi tessellations:
Applications and algorithms,” SIAM Rev., vol. 41, pp. 637–676, 1999.

[18] S. Lloyd, “Least squares quantization in pcm,” IEEE Transactions on
Information Theory, vol. 28, no. 2, pp. 129–137, 1982.

[19] N. P. Rougier, “A density-driven method for the placement
of biological cells over two-dimensional manifolds,” Frontiers
in Neuroinformatics, vol. 12, 2018. [Online]. Available: https:
//www.frontiersin.org/article/10.3389/fninf.2018.00012

[20] C. V. Beojone and N. Geroliminis, “On the inefficiency of
ride-sourcing services towards urban congestion,” Transportation
Research Part C: Emerging Technologies, vol. 124, p. 102890, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0968090X20307907

[21] R. W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM,
vol. 5, no. 6, p. 345, June 1962. [Online]. Available: https:
//doi.org/10.1145/367766.368168

[22] Y. Ji, J. Luo, and N. Geroliminis, “Empirical observations
of congestion propagation and dynamic partitioning with probe
data for large-scale systems,” Transportation Research Record,
vol. 2422, no. 1, pp. 1–11, 2014. [Online]. Available: https:
//doi.org/10.3141/2422-01

https://www.pnas.org/content/114/3/462
https://www.sciencedirect.com/science/article/pii/S0965856416311648
https://www.sciencedirect.com/science/article/pii/S0965856416311648
https://www.sciencedirect.com/science/article/pii/S0191261515301119
https://www.sciencedirect.com/science/article/pii/S0191261515301119
https://doi.org/10.1145/2735960.2735961
https://doi.org/10.1177/1729881418797494
https://www.frontiersin.org/article/10.3389/fninf.2018.00012
https://www.frontiersin.org/article/10.3389/fninf.2018.00012
https://www.sciencedirect.com/science/article/pii/S0968090X20307907
https://www.sciencedirect.com/science/article/pii/S0968090X20307907
https://doi.org/10.1145/367766.368168
https://doi.org/10.1145/367766.368168
https://doi.org/10.3141/2422-01
https://doi.org/10.3141/2422-01

	Introduction
	Problem statement
	Preliminaries
	Distributed Control Law Formulation

	Simulation study
	Case Study I: Continuous map case
	Case Study II: Discrete space case with Shenzhen network
	Introduction for simulation architecture
	Data preprocessing and generation
	Experimental Setup
	Simulation results and analysis

	Conclusion
	References

