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Abstract

High level of detail renders microscopic traffic models impractical for con-
trol purposes and local control schemes cannot coordinate actions over large
scale heterogeneously congested urban networks. Developing efficient mod-
els and control methods for large-scale urban road networks is, therefore,
an important research challenge. Alleviating congestion via manipulation of
traffic flows or assignment of vehicles to specific paths has a great potential
in achieving efficient network usage. Motivated by this fact, this paper pro-
poses a hierarchical traffic management system. The upper-level route guid-
ance scheme optimizes network performance based on actuation via regional
split ratios, whereas the lower-level path assignment mechanism recommends
subregional paths for vehicles to follow, satisfying the regional split ratios in
order to achieve said performance. Simulation results from a 49-subregion or
7-region network shows a great potential of the proposed scheme in achiev-
ing coordination and efficient use of network capacity, leading to increased
mobility.
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1. Introduction

Real-time management of urban road traffic is becoming increasingly im-
portant with accelerating urbanization leading to ever higher levels of con-
gestion in cities. Urban traffic control literature usually focuses on link-level
dynamics and local control laws, which present difficulties for analysis and
synthesis of large-scale traffic management schemes. The high level of detail
in microscopic models, although desirable for simulation studies, leads to
highly complex and thus possibly intractable models ill-suited for real-time
control purposes. Furthermore, local control schemes, although successful in
managing local traffic in undersaturated conditions, fail to achieve coordina-
tion with other parts of the urban network. These shortcomings emphasize
the need for developing aggregated models of large-scale urban networks and
designing network-level control schemes that can efficiently manage major
components of the city traffic, while at the same time providing a realistic
coordination between the actions of the network-level controller and the com-
mands sent to individual drivers for manipulating the macroscopic behavior.

The modeling approach adopted in this paper is based on the macroscopic
fundamental diagram (MFD) of urban traffic. First proposed by Godfrey
(1969), and later shown to exist under dynamic conditions in urban areas
with homogeneous distribution of congestion in Geroliminis and Daganzo
(2008), the MFD provides a unimodal, low-scatter, and demand-insensitive
relationship between accumulation and production (and possibly trip com-
pletion flow) for an urban region. Despite having shortcomings related to
heterogeneity (i.e., the region should have low heterogeneity for a well-defined
MFD to exist) and hysteresis (the MFD may behave differently on the onset
and offset of congestion), the MFD is a powerful modeling tool that enables
the development of low-complexity dynamical models for large-scale urban
road networks, leading to the design of network-level traffic management and
control schemes.

Modeling and control of large-scale urban road networks via MFD re-
ceives increasing attention in the transportation community. Perimeter con-
trol strategies, i.e. restricting the flow at the boundary of urban regions,
using the concept of MFD have been particularly attracting significant in-
terest. Daganzo (2007) develops a bang-bang controller for a single region
network and ensures that the average density remains in the uncongested
part of the diagram. Keyvan-Ekbatani et al. (2012) develop a single region
PI controller and implement the perimeter control in a microscopic simulation
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environment. Keyvan-Ekbatani et al. (2015) consider a multiple concentric
congestion scenario and develop a 2-level controller. Aboudolas and Geroli-
minis (2013) extend the problem to a multi-region framework and target
critical accumulation values in all regions. However, this might not be opti-
mal or feasible under heterogeneously congested conditions. Kouvelas et al.
(2017) overcome this discrepancy using a data-driven optimization technique
and estimate the optimal gain values and set points. Alternatively, Gerolim-
inis et al. (2013) formulate the optimal perimeter control problem within a
model predictive control framework and implement it on a 2-region network.
Using the same framework, Ramezani et al. (2015) incorporate the hetero-
geneity aspects into the MPC framework and show that a 2-level controller
can further improve conditions. In addition, Haddad and Shraiber (2014);
Zhong et al. (2017) study the robustness and Haddad (2017a,b) investigate
the optimality of the perimeter control strategies. Yang et al. (2017) con-
siders the delay at the intersections along the perimeter and optimizes the
network performance as a whole. These studies rely on the aggregated net-
work dynamics expressed via MFD and herald the progress towards a new
generation of network-level traffic control schemes.

Studies on network traffic state estimation via MFD using various sensors
point out the advantages of an aggregated approach in face of limited data,
see (Gayah and Dixit, 2013; Ortigosa et al., 2014; Nagle and Gayah, 2014;
Leclercq et al., 2014; Ji et al., 2014; Saberi et al., 2014). And, clustering
techniques to partition a heterogeneously congested city into homogeneous
regions with well defined MFDs can be found in Saeedmanesh and Geroli-
minis (2016), Saeedmanesh and Geroliminis (2017), Lopez et al. (2017), An
et al. (2017) and others. MFD-based models are also exploited to develop
optimum pricing strategies, see Zheng et al. (2012, 2016).

Works relying on MFD models and exploring actuation via route guidance
started appearing relatively recently in the literature. Simple routing strate-
gies are studied in Gayah and Daganzo (2011) and Leclercq et al. (2013) for
two-bin or two-route network abstractions. Management of grid networks
without traffic lights is explored in Knoop et al. (2012) using MFD-based
routing strategies. An optimal route guidance scheme based on model pre-
dictive control is developed in Hajiahmadi et al. (2013). A network-level
MPC with integrated perimeter control and regional traffic distribution is
proposed in Sirmatel and Geroliminis (2018) for alleviating congestion in
a multi-region framework. Ramezani and Nourinejad (2017) develops an
MFD-based taxi dispatch system to improve the taxi service performance
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and to reduce traffic congestion. Menelaou et al. (2017) develop a heuristic
solution to the route reservation problem that avoids traffic congestion and
minimizes the travel time. These studies build on MFD’s capability of repre-
senting large-scale traffic with few variables and aim for an improved routing
configuration in the network. Nevertheless, as MFD represents the traffic at
an aggregated scale, the resulting configuration at an upper-level (i.e. re-
gional traffic distribution) needs to be translated to a lower-level signal (i.e.
path) that can be followed by individual drivers. Yildirimoglu et al. (2015)
build an iterative route guidance strategy (based on the assignment model in
Yildirimoglu and Geroliminis (2014)) that addresses the hierarchical nature
of the problem; however, this method presents computational difficulties and
convergence issues especially in high congestion scenarios. This study, on the
other hand, aims for an elegant optimization framework and moves toward
an efficient hierarchical management scheme.

In this paper, we propose a hierarchical traffic management scheme for
alleviating congestion and improving mobility in large-scale urban road net-
works. We develop an MFD-based strategy that considers optimization of
routing variables at the upper level and manipulation of traffic flows via path
assignment at the lower level. Previous works on MFD-based route guidance
consider only a centralized aggregated approach. Their approach is impor-
tant to test the feasibility of the developed strategies at the macro-level, but
does not provide any insights about the implementation at a lower disaggre-
gated level. This is a general criticism towards the MFD-based studies and
there are recent efforts to apply some of these frameworks in more detailed
case studies (see for example the work of Keyvan-Ekbatani et al. (2015) for
equalizing queues at the boundary intersections associated with perimeter
control, the work of Kouvelas et al. (2017) to apply a more complex MFD
control framework in microsimulation, the work of DePrator et al. (2017)
to see how the effect of left turns in a microscopic modeling environment
influence the shape of the MFD). Nevertheless, there is no effort so far (to
the best of our knowledge) to see how MFD-based route guidance can be
implemented at a lower level. In our framework, the upper level employs an
economic model predictive control (MPC) scheme (building on the work in
Sirmatel and Geroliminis (2018)) with route guidance actuation at the upper
layer considers dynamics with region MFDs and computes the regional split
ratios (i.e., the percentages of vehicle flows exiting a region and entering a
particular neighbouring region) that minimize the total time spent (TTS) in
the network for a finite time horizon. An economic MPC scheme differs from
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standard MPC formulations as in the former objective functions expressing
economically optimal plant operation (such as minimizing time spent) are
considered, whereas in the latter the objective function is related to stan-
dard control objectives such as stabilization or setpoint tracking. The lower
level involves a decentralized subregional path assignment mechanism that
computes the paths for vehicles appearing in each region such that the re-
gional split ratios from the upper layer are achieved in the network. This
mechanism is formulated as an optimization problem where the ordered con-
trol actuation from the upper layer is matched with the reconstructed or
aggregated actions at the lower level. The study also considers a plant (i.e.,
the simulation model representing reality) where detailed paths and accu-
mulation based subregion-level models are used (as proposed in Yildirimoglu
et al. (2015)) and a model where control decisions are made with more aggre-
gated, exclusively accumulation based region-level model of MFD dynamics.
The model contains states that are easier to be estimated with multi-sensor
data compared to the plant states. This region model is integrated with
the heterogeneity variance term (as developed in Ramezani et al. (2015)) for
modeling the effect of decreased outflow with increasing heterogeneity, and
used as a prediction tool in the regional route guidance MPC.

The contributions of this paper are twofold: (1) we propose a decentral-
ized integer linear programming (ILP) based path assignment mechanism
that translates a set of desired regional split ratios (each specifying the per-
centage of flow exiting the region through a specific neighboring region) to
the subregion-level paths and assigns vehicles appearing in the region to those
paths, (2) we integrate the regional route guidance MPC with heterogeneity
variance and dynamic average trip lengths so as to consider the effects of
heterogeneity and heteroscedasticity in the MFD-based region model.

(1) While MFD-based control strategies lean on manipulation of aggre-
gated or macroscopic flows, a route guidance strategy requires disaggregated
or microscopic instructions to be provided to drivers. The ILP-based sub-
regional path assignment mechanism we develop here is the first attempt
to build the link between these two levels using an optimization framework.
Note that the work in Sirmatel and Geroliminis (2018) does not consider
the model-plant mismatch and works with the assumption that individual
vehicle flows can be regrouped to execute the ordered split ratios in a region.
Although the desired regional split ratios can be guaranteed by random sam-
pling of vehicles and assigning them to the corresponding paths, the impact of
such a strategy on the heterogeneity and the average trip distance in regions
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might be detrimental to the performance of the network. Driver acceptabil-
ity of these strategies should also be investigated as there is no guarantee
that the proposed route has a better travel time at the lower level (MFD
does not consider the exact routes of individuals). Therefore, there is need
for a novel mechanism that can properly distribute the individual vehicle
flows and guarantee the desired regional split values while maintaining the
heterogeneity and average distance measures.

(2) The regional route guidance MPC proposed in Sirmatel and Gerolimi-
nis (2018) does not consider any effects related to heterogeneity and assumes
a constant average trip length for each region. However, as the network
considered in this paper is made of subregions, the region MFDs are ad-
versely affected from the resulting heterogeneous distribution of congestion
among them and are subject to dynamical variations of regional average
trip lengths. To consider these two effects within the regional route guid-
ance MPC framework, the formulation of Sirmatel and Geroliminis (2018)
is extended in this paper to include the heterogeneity variance effects and
dynamic average trip lengths (as proposed in Yildirimoglu et al. (2015) and
Ramezani et al. (2015)). The joint operation of the ILP-based path assign-
ment mechanism and the regional route guidance MPC as a hierarchical
traffic management scheme is tested in simulations for heterogeneously con-
gested conditions in a large-scale urban network with MFD dynamics, the
results of which indicate the potential of the proposed scheme in alleviating
congestion and improving mobility in urban networks.

The remainder of this paper is structured as follows. In Section 2, we
present the two levels of traffic modeling; region and subregion model. In
Section 3, we elaborate on the mechanism of the hierarchical traffic manage-
ment system that consists of regional route guidance MPC and ILP-based
subregional path assignment. In Section 4, we discuss the results from a case
study. And, we conclude the paper in the last section with final remarks.

2. MFD-Based Modeling of Large-Scale Urban Networks

In this section, we introduce two traffic models: (i) a region model con-
sidering an urban network partitioned into a small number of regions, and
(ii) a subregion model defining dynamics for a far more detailed network
representation where the above regions are divided into smaller subregions.
A network consisting of 7 regions and 49 subregions is schematically shown
in Figure 1.
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To build a hierarchical control scheme, we use the approach of Ramezani
et al. (2015) with two modeling levels; subregion model representing the traf-
fic reality and region model representing the operation or prediction model.
In the subregional representation, the network is actually not partitioned
into 49 subregions, but simply this collection of 49 subregions is the network
itself. In other words, the subregions, for the purposes of this work, are the
smallest particles and represent the network itself. The subregion dynamics,
together with the presumed subregional MFD parameters, are considered to
represent the reality of the urban network, where we assume that: (1) There
is no internal routing inside a subregion (as details beyond the subregion are
not modeled), (2) there are no interactions between the subregional average
trip lengths and the path assignment decisions (the average distance the ve-
hicles cross in a subregion is assumed constant and same for everyone), (3)
the traffic performance is represented by a stable MFD (note that we also
test the proposed model later with some scatter in subregion MFD). In a
more detailed representation (e.g., microscopic simulation), subregions can
be replaced with links (sections between intersections), where also there is
no route choice (the only option is to cross the whole link), trip distance is
the same for all users and fundamental diagram is stable. Therefore, one can
make an analogy between subregions and links. In contrast to this, in the
region model, we assume that the network (as represented by the 49 subre-
gions) is partitioned into 7 regions for control purposes, and this is the actual
partitioning considered in the paper. Region sizes are important in the sense
that partitioning the network into a large number of regions could poten-
tially lead to computational problems regarding the route guidance MPC.
In Sirmatel and Geroliminis (2018), the computational efficiency results sug-
gest that for a network partitioned into 7 regions, the MPC schemes retain
real-time feasibility, whereas a number much more than 7 could be expected
to yield intractability problems.

2.1. Region Model

Consider an urban networkR with heterogeneous distribution of accumu-
lation, with a given partition into R regions, i.e., R = {1, 2, . . . , R}. Inflow
demand generated in region I with destination J is QIJ(t) (veh/s), whereas
NH
IJ(t) (veh) is the accumulation in region I with destination J that is going

to transfer from I to H, with NI(t) (veh) expressing the total regional accu-
mulation in I, at continuous time t; I, J ∈ R; NI(t) ,

∑
J∈R

∑
H∈VI N

H
IJ(t),

where VI is the set of regions adjacent to I. For each region we consider

7



Figure 1: Schematic of a multi-region urban network, consisting of 7 regions each with 7
subregions (region 1 contains subregions 1 to 7, region 2 contains 8 to 14, etc.).

regional split ratios θHIJ(t) (for I, J ∈ R, H ∈ VI), that can distribute the
transfer flows entering region I with destination J over neighboring regions
H ∈ VI . Note here that in contrast to previous works (Yildirimoglu et al.,
2015; Sirmatel and Geroliminis, 2018), where the regional split ratio θHIJ(t)
expresses a distribution of the flow exiting region I over its neighbors, in
the present work it distributes the flow entering region I. This definition of
θHIJ(t) is consistent with the definition of the path assignment control inputs
for the subregional model, which will be described in the next sections.

Mass conservation equations for an R-region MFDs network are:

ṄH
II(t) = θHII(t)

(
QII(t) +

∑
G∈VI

M I
GI(t)

)
−MH

II(t) H ∈ VI ∪ I (1a)

ṄH
IJ(t) = θHIJ(t)

(
QIJ(t) +

∑
G∈VI

M I
GJ(t)

)
−MH

IJ(t) H ∈ VI , I 6= J, (1b)
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for I, J ∈ R. M I
II(t) (veh/s) is the exit (i.e., internal trip completion) flow

from region I to destination I (exiting without leaving region I), whereas
MH

IJ(t) (veh/s) is the flow transferring from I to H with destination J . The
exit and transfer flows can be expressed as follows (following Ramezani et al.
(2015)):

M I
II(t) =

N I
II(t)

NI(t)

FI(NI(t))

LII(t)
ρI(NI(t), σ(NI(t))) (2a)

MH
IJ(t) =

NH
IJ(t)

NI(t)

FI(NI(t))

LIH(t)
ρI(NI(t), σ(NI(t))), (2b)

where FI(·) (veh.m/s) is the production MFD of region I as a function of
regional accumulation NI(t) (for a 3rd degree polynomial approximation,
the MFD is of the form FI(NI(t)) = A NI(t)

3 + B NI(t)
2 + C NI(t), where

A, B, and C are the MFD parameters estimated from data), LII(t) and
LIH(t) are the average trip lengths for internal trips inside region I and
transferring trips from I to H, respectively, whereas ρI(·) ∈ [0, 1] is the
heterogeneity coefficient of region I expressing the decrease in production
due to heterogeneity (ρI(·) = 1 if region I is perfectly homogeneous and it
decreases with increasing heterogeneity), which can be formulated as follows
(see Ramezani et al. (2015) for details):

ρI(NI(t), σ(NI(t))) = β · (eγ·(σ(NI(t))−σh) − 1) + 1 ∀I ∈ R, (3)

where σ(NI(t)) is the heterogeneity variance of region I, σh is the standard
deviation of summation of negative binomial distributions of the subregions
of region I with mean occupancy NI(t)/|I| (with I the set of subregions
in region I and |I| its size), whereas β and γ are estimated parameters de-
scribing the effect of heterogeneity in link density on the production of the
region. Analyses based on real data demonstrate that the negative bino-
mial distribution can provide accurate estimations for mean and standard
deviation of occupancies for the Yokohama network (Ramezani et al., 2015).
That means, one can accurately estimate the production in a region using
two terms; (i) an upper bound (low-scatter) MFD (i.e. FI(NI(t))) and (ii)
the heterogeneity degradation (i.e. ρI). While FI(NI(t)) can be represented
with a 3rd-degree polynomial function, ρI is modeled with an exponential
function. The parameters of these functions are network-specific values and
might exhibit changes in different applications; however, it is important that
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one uses a consistent set of parameters based on the same network and data
set.

The regional split ratios θHIJ(t) are control inputs which are to be com-
puted by the network-level route guidance MPC, the design of which is stud-
ied in the next section. Note that recently there are efforts to address in
heterogeneous trip lengths in more detail by considering a trip based for-
mulation (see for example Leclercq et al. (2015), Mariotte et al. (2017) and
Lamotte and Geroliminis (2017)). While these models might provide a bet-
ter estimation of outflow, they are more tedious to be integrated in a control
framework. This is an ongoing research direction.

2.2. Subregion Model

Subregion model presented in this section builds on Yildirimoglu and
Geroliminis (2014), and it is necessary to develop the path assignment mech-
anism which will be introduced in the next section. Consider an urban
network SR with heterogeneous distribution of accumulation and a given
partition into SR subregions, i.e., SR = {1, 2, . . . , SR}. Now, consider a
subregion r ∈ SR with homogeneous distribution of congestion whose traffic
performance is well described by MFD, fr(nr(t)), representing the subregion
production (veh.m/s) corresponding to the accumulation nr(t) (veh) at con-
tinuous time t. The average subregion r speed is vr(t) = fr(nr(t))/nr(t)
(m/s), and trip completion rate is mr(t) = fr(nr(t))/lr (veh/s), consider-
ing a constant subregional average trip length lr (m) independent of time,
destination or next region.

Let np,ro,d(t) denote the number of vehicles in subregion r at time t with
first subregion o in a given region I, destination subregion d and path p,
i.e. the sequence of subregions from o to the last subregion d̄ in I; o, d̄, r ∈
I, d ∈ SR,

∑
o

∑
d

∑
p n

p,r
o,d(t) = nr(t). Note that r belongs to p, and all

subregions along p are in region I. That means, np,ro,d(t) tracks the vehicles
from the time they enter region I or start their trip until they leave it or
reach their destination. Therefore, o is either the origin subregion where the
demand is generated or the boundary subregion that receives flows from other
regions. Similarly, d̄ is either the destination subregion (i.e. d = d̄) or the
boundary subregion that sends flows to other regions. Trip completion rate
or the transfer flow mp,r

o,d(t) for the same group of vehicles reads as follows:

mp,r
o,d(t) =

np,ro,d(t)

nr(t)
·mr(t) =

fr(nr(t))

nr(t)
·
np,ro,d(t)

lr
= vr(t) ·

np,ro,d(t)

lr
. (4)
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If d = r, the above equation refers to flow leaving the network at subregion
d. Otherwise, it represents the transfer flow from subregion r to subregion
p+(r), i.e. the subregion following r in the path p. However, as the transfer
flow is also subject to the boundary capacity between the subregions, we
denote the actual transfer flow by m̂p,r

o,d(t). Note that, in a similar way, p−(r)
is the subregion preceding r in path p. Subregion traffic dynamics are then
defined as follows:

dnp,ro,d
dt

=


qpo,d −m

p,r
o,d (i) if r = o & r = d,

qpo,d − m̂
p,r
o,d (ii) if r = o & r 6= d,

m̂
p,p−(r)
o,d −mp,r

o,d (iii) if r 6= o & r = d,

m̂
p,p−(r)
o,d − m̂p,r

o,d (iv) otherwise.

(5)

where
m̂p,r
o,d = min[mp,r

o,d, c
p
r(np+(r)) · ap,ro,d] ∀ r 6= d (6)

qo,d denotes the sum of the exogenous demand generated in o or the flow
transferred to o at time t with destination d, and qpo,d represents the assigned
flow to path p;

∑
p q

p
o,d = qo,d. Note that time t is omitted from the above

equations for the sake of notational simplicity. Additionally, qpo,d is equal
to qo,d · αpo,d, where αpo,d is the path fraction and the decision variable to be
computed by ILP-based path assignment scheme that will be described in the
next section. Equation 5 defines the change in accumulation np,ro,d based on
four cases. In (i), we deal with internal demand within the same subregion;
therefore, the rate is simply the newly assigned flow minus the trip completion
rate which is not bounded by any capacity function. The subregion-based
model assumes that internal subregional demand never leaves the subregion;
therefore, in this case the subregional path p consists of only one subregion.
In (ii), r is the first subregion in the region but not the destination. So, the
rate is simply the assigned flow minus the transfer flow to the next subregion
in path p. (iii) If r is destination but not the first subregion, then the rate
is defined as the transfer flow from the previous subregion minus the trip
completion rate which is again not bounded by any capacity function. In
other cases (iv), the rate is equal to the transfer flow from the previous
subregion minus the transfer flow to the next subregion.

Equation 6 defines the actual transfer flow from r to the next subregion
p+(r) in path p for all subregions except destination subregion d. It is the
minimum of two terms: (i) the sending flow from subregion r and (ii) the re-
ceiving capacity of subregion p+(r) that is a function of two terms; cpr(np+(r))
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and ap,ro,d. Capacity at boundary between r and p+(r), i.e. cpr(np+(r)), is a
decreasing function of accumulation, which represents the resistance of the
subregion to absorb more traffic with increasing congestion. Additionally,
ap,ro,d is the fraction of boundary capacity that can be allocated to m̂p,r

o,d. Using
mp,r
o,d values, we calculate the total number of vehicles heading for a particular

boundary between two subregions. As not all the vehicles may be allowed
to pass the boundary due to the finite capacity, we calculate the fraction of
mp,r
o,d to the total flow heading for the same boundary and assign the cor-

responding fraction of the capacity to m̂p,r
o,d. Equation 6 suggests that only

the minimum of the sending flow, i.e. mp,r
o,d, and the allocated capacity, i.e.

cpr(np+(r)) ·ap,ro,d can cross the boundary. This calculation follows the definition
of Little (1961).

3. Hierarchical Traffic Management of Large-scale Urban Networks

In this section, we develop an integrated hierarchical route guidance sys-
tem. The flowchart in Figure 2 summarizes the proposed hierarchical frame-
work. On the upper level, the MPC scheme computes optimum regional split
ratios based on the accumulation, average trip length and heterogeneity mea-
surements taken from the subregion model. MPC assumes that average trip
length and heterogeneity measures remain constant over the prediction hori-
zon and minimizes the network delay by predicting the evolution of region
accumulations. The optimum split ratios are then transferred to ILP-based
path assignment scheme, which produces subregional path decisions in ac-
cordance with the aggregated split values within each region. This procedure
assigns the transfer flow and the exogenous demand to the paths between the
subregion they appear in (or the boundary subregion) and their destination
(or the boundary subregion). The resulting path decisions calculated by the
ILP-based path assignment scheme are then applied to the subregion model.

While the subregion and region models are defined based on the contin-
uous time t, the hierarchical control framework operates on a discrete-time
basis. The lower-level, consisting of the subregion model (i.e., the plant)
and the ILP mechanism, is operated according to the simulation time step
ts (see the clock at lower right of Figure 2). The simulation time step ts is
an integer multiple of the simulation sampling time Ts (s), i.e., ts = ms · Ts
with ms ∈ Z≥0. In other words, the ILP commands αpo,d(ts) are updated at
each simulation time step ts (i.e., each Ts seconds). The MPC scheme at
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Figure 2: Structure of the proposed path assignment and regional route guidance based
hierarchical traffic management scheme.

the upper-level, on the other hand, is operated according to the control time
step tc (see the clock at lower left of figure 2). The control time step tc is
an integer multiple of the control sampling time Tc (s), i.e., tc = mc · Tc with
mc ∈ Z≥0. Thus, the MPC scheme receives the traffic state information, and
updates its decisions θHI,J based on this information, at each control sampling
time tc (i.e., each Tc seconds). Note that control time step Tc is usually cho-
sen as an integer multiple of Ts for convenience. Hence, the MPC command
θHIJ(tc) is updated at each control time step tc and kept constant between
consecutive control time steps, while the ILP mechanism uses this constant
value to compute the αpo,d(ts) command until the control step ends (thus,
using the same value for Tc/Ts times). The whole procedure is repeated in
the next control time step in the receding horizon fashion.

3.1. ILP-based Subregional Path Assignment

In this section, we formulate an integer linear programming (ILP) problem
in order to assign the flows in the subregion network so that they satisfy θHIJ
values ordered by route guidance MPC and produce LIH values within a
tolerance range. The formulation, which is repeated for each region I, reads
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as follows:

minimize
αp
o,d

R∑
J=1

∑
H∈VI

(
|θHIJ(tc)− θ̂HIJ | ·

∑
o∈I

∑
d∈J

qo,d

)
(7)

subject to
∑
p∈Po

αpo,d = 1, ∀o ∈ I, ∀d (7a)

αpo,d ∈ {0, 1} ∀o ∈ I, ∀d, ∀p ∈ Po (7b)

θ̂HIJ =

∑
o∈I
∑

d∈J
∑

p∈Po
H

(
qo,d · αpo,d

)∑
o∈I
∑

d∈J qo,d
∀J, ∀H ∈ VI (7c)

L̂IH =

∑
o∈I
∑

d

∑
p∈Po

H

(
qo,d · αpo,d · lp

)∑
o∈I
∑

d

∑
p∈Po

H

(
qo,d · αpo,d

) ∀H ∈ VI (7d)

(1− ε) · LIH(tc) ≤ L̂IH ≤ (1 + ε) · LIH(tc) ∀H ∈ VI , (7e)

where θHIJ(tc) is the regional split ratio ordered by MPC at the control time
step tc and LIH(tc) is the average trip length assumed to remain constant
from the same control time step. θ̂HIJ and L̂IH , on the other hand, are the
corresponding variables that are reconstructed based on the trajectories of
assigned flows. Also, denote Po the set of all paths starting from o, PoH
the subset of paths heading for neighboring region H, lp the distance to
be crossed along path p within region I and ε tolerance error between the
observed and reconstructed trip lengths. Note that simulation time step ts
is omitted from the above equations for the sake of notational simplicity and
the only static variables are the physical path distance lp and tolerance error
ε. The remaining variables, which are not followed by .(tc), should in fact be
followed by .(ts).

Equation 7 minimizes the weighted average of the absolute difference
between the ordered and reconstructed regional split ratios given the con-
straints presented from Equation 7a to 7e. The objective function con-
siders the weighted average with respect to demand between regions (i.e.∑

o∈I
∑

d∈J qo,d) so as to attach more importance to high-volume pairs. Equa-
tion 7a guarantees that the demand between o and d is assigned to a path,
while Equation 7b defines αpo,d as a binary variable and warrants an all-or-
nothing assignment process. Considering the demand qo,d to be assigned
between o and d (including the exogenous demand and the transfer flow),
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Equation 7c defines the regional split ratios based on the assigned flows.
The denominator in Equation 7c is the total flow to be assigned between
I and J , while the numerator is the portion allocated with the routes tar-
geting neighboring region H. Similarly, Equation 7d computes the average
trip lengths based on the assigned paths. The denominator represents the
assigned flow heading for the boundary between I and H, and the numerator
defines the total distance traveled by them. Finally, Equation 7e defines the
tolerance bounds that the reconstructed trip length should fall into. Note
that the above formulation is repeated for each region I.

Since Equation 7d includes the decision variable αpo,d both in the numer-
ator and the denominator, the resulting problem cannot be formulated as
an ILP. Therefore, assuming that θHIJ values ordered by MPC will be fully
satisfied, we replace Equation 7d with the following:

L̂IH =

∑
o∈I
∑

d

∑
p∈Po

H

(
qo,d · αpo,d · lp

)∑
o∈I
∑

d (qo,d · δdJ · θHIJ)
∀H ∈ VI (8)

where δdJ is 1 if d ∈ J , and 0 otherwise. We note that Equation 7d and
Equation 8 are equal to each other if θHIJ and θ̂HIJ are the same. And, the above
approximation does not affect the performance of the assignment scheme as
long as θHIJ and θ̂HIJ are close to each other. Essentially, Equation 7d is
replaced with Equation 8 relying on the assumption that the value of the
objective function is zero. However, this does not force the objective function
to be zero. The decision variables (i.e. αpo,d) are still in the numerator of the
formula presented in Equation 8, which allows the framework to test different
values of L̂IH and so θ̂HIJ . Obviously, the value of L̂IH from Equation 7d

will differ from that of Equation 8 in most cases where θHIJ and θ̂HIJ are
not exactly the same. Nevertheless, this discrepancy should be minimal at
the optimal solution where θHIJ and θ̂HIJ are expected to be similar. This
replacement is crucial to keep the problem linear and tackle it with ILP
solution methods. Nevertheless, we realize that Equation 8 does not account
for dynamic conditions in the subregions; it only considers the distance to
be crossed along the path, which is a static physical measure. In order to
ensure homogeneity within the regions, we further modify Equation 8 and
express the travel time from region I to region H with the below formula:

L̂IH
VI

=

∑
o∈I
∑

d

∑
p∈Po

H

(
qo,d · αpo,d ·

∑
r∈p (lr/vr)

)
∑

o∈I
∑

d (qo,d · δdJ · θHIJ)
∀H ∈ VI (9)
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where VI denotes the average speed in region I (i.e. FI(NI)/NI). Basically,
we break the path distance lp into subregions, and calculate the travel time in
each subregion r using the static average distance lr and the dynamic speed vr
changing with time ts (the actual notation should be vr(ts), but ts is omitted
for simplicity). The sum of them gives us the travel time on the subregional
path p. If actual traffic conditions are ignored, certain subregions within
a given region might be more (or less) congested depending on the routing
and the subregional paths. To avoid such cases and improve homogeneity
within regions, we replace Equation 8 with Equation 9 where we account
for both distance and current traffic conditions in the network. Note that
the target measure in Equation 9 is the average travel time from I to H,
not the average distance which is a static network attribute. This allows
us to react to uneven distribution of congestion across the subregions and
ensure homogeneity within the regions. In other words, Equation 9 enables
ILP to control the region-to-region travel times and avoids overloading of
few subregions. We also note that we do not use Equation 9 the way it is
presented; we take VI to the right hand side of the equation to compute L̂IH
and substitute it into Equation 7e.

The path assignment mechanism could also be formulated as a linear
programming problem, where αpo,d could be defined as a continuous variable
between 0 and 1. Although this would significantly simplify the computation
efforts, there may not always be enough demand to accommodate such split
ratios. While we keep the formulation here as an ILP problem, we test the
effects of this assumption later in Section 4.3.

The ILP problem is built with YALMIP (Löfberg, 2004), an efficient
toolbox for modeling and optimization in MATLAB, and solved with Gurobi
mixed integer linear programming solver. The optimization scheme is im-
plemented using MATLAB 8.5.0 (R2015a), on a 64-bit Windows PC with
3.6-GHz Intel Core i7 processor and 16-GB RAM.

3.2. Regional Route Guidance MPC

We formulate the problem of finding the regional split ratio θHIJ values
that minimize total time spent (for a finite horizon) as the following discrete
time economic nonlinear MPC problem (extending the work in Sirmatel and
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Geroliminis (2018)):

minimize
θ

Tc ·
Np−1∑
k=0

1TN(k) (10)

subject to N(0) = N̂(tc)

|θ(0)− θ̂(tc − 1)| ≤ ∆θ

for k = 0, . . . , Np − 1 :

N(k + 1) = fr

(
N(k), Q(k), ρ(tc), L̂(tc), θ(k)

)
0 ≤ NI(k) ≤ N jam

I , ∀I ∈ R
0 ≤ θHIJ(k) ≤ 1, ∀I, J ∈ R, H ∈ VI ∪ I∑
H∈VI∪I

θHIJ(k) = 1, ∀I, J ∈ R

if k ≥ Nc :

θ(k) = θ(k − 1),

where Tc and tc are the control sampling time and control time step, respec-
tively (with tc = mc · Tc where mc ∈ Z≥0), N(k), Q(k), ρ̂(tc), L̂(tc), and θ(k)

are vectors containing all NH
IJ(k), QIJ(k), ρ̂I(tc), L̂IH(tc) and θHIJ(k) terms

(with ρ̂I(tc) , ρI(N̂I(tc), σ(N̂I(tc)))), respectively, with k being the control
interval counter, f is the time discretized version of eq. (1)–(2), N̂(tc), ρ̂(tc),
and L̂(tc) are the measurements on accumulations, heterogeneity coefficient,
and average trip lengths taken at the current control time step, respectively,
θ̂(tc − 1) is the control input applied to the plant at the previous control
time step, Np and Nc are the prediction and control horizons, whereas ∆θ is
the rate limit on regional split ratios. Within the prediction horizon Np, we

assume that heterogeneity coefficients ρ̂(tc) and average trip lengths L̂(tc)
remain constant. To relax this assumption one needs to either estimate a
vector of accumulations and trip lengths valid for a finite horizon into the
future (same length as Np) or model the dynamics that define heterogeneity
and average trip length as a function of route guidance control inputs. We
also consider that as trip length is a difficult quantity even to measure and
estimate, it will be even more difficult to predict it. Assuming a quantity
constant, when it is difficult to predict, is a well-established approach in
MPC literature (it is better not to predict when errors are expected to be
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large). The prediction aspect is considered outside the scope of the paper,
and could be considered for future work.

The optimization problem (10) is a nonconvex nonlinear program (NLP),
which can be efficiently solved via, e.g., sequential quadratic programming
or interior point solvers (see Diehl et al. (2009) for details). Software imple-
mentation of the MPC scheme is done using the CasADi (Andersson et al.,
2018) toolbox in MATLAB 8.5.0 (R2015a), on a 64-bit Windows PC with
3.6-GHz Intel Core i7 processor and 16-GB RAM, using a direct collocation
scheme (see, e.g., Diehl et al. (2006) for details) with the NLPs solved by the
interior point solver IPOPT (Wächter and Biegler, 2006).

4. Case study

The simulation case study is based on a network with 49 subregions par-
titioned into 7 regions (see Figure 1). The path-based subregion-level model
given in Equations (4)-(6) is used as the simulation model (i.e., the plant
representing reality), whereas the region-level model given in Equations (1)-
(2) is used as the prediction model of the route guidance MPC. Each region
is assumed to have a production MFD with the parameters A = 9.98 · 10−8,
B = −0.002, C = 9.78, jam accumulation N jam = 104 (veh), critical accumu-
lation N cr = N jam/3 (veh), which are consistent with the MFD observed in
a part of downtown Yokohama (see Geroliminis and Daganzo (2008)). Sub-
regions are assumed to have well-defined production MFDs, the parameters
of which are scaled versions of the region MFDs, whereas the associated av-
erage trip lengths are constant and there is assumed to be no heterogeneity
affecting the subregions. Region MFDs, on the other hand, are exposed to
variations in the outflow as they are affected by the average trip lengths
LIH(t) and heterogeneity coefficient ρI(t), which are dynamically changing
with the traffic conditions at the subregion level. Prediction and control hori-
zons for the MPC are chosen as Np = 5 and Nc = 2 (following the controller
tuning results of Sirmatel and Geroliminis (2018) for a 7-region network as
depicted in Figure 1). The traffic states in the plant are updated using a
time discretized version of the subregion model given in (5), with a simu-
lation sampling time of Ts = 60 s. Path assignment decisions of the ILP
mechanism are also updated together with the traffic states each Ts = 60 s,
whereas the MPC operates with a control sampling time of Tc = 240 s. Thus,
the ILP mechanism uses the same route guidance decision coming from the
MPC for the 4 simulation time steps belonging to the same control time step.
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The subregional path assignment mechanism is essentially in charge of
tracking two signal classes; split ratios (i.e. θHIJ) and average trip lengths
(i.e. LIH). While the ILP formulation minimizes the difference between the
ordered split ratios (i.e. θHIJ) and reconstructed split ratios (i.e. θ̂HIJ) (Equa-
tion 7), it ensures that the reconstructed trip lengths (i.e. L̂IH) are close
to the trip lengths observed from the plant (i.e. LIH) and are within the
bounds defined by ε (see Equation 7e). Regional route guidance MPC as-
sumes that average trip length measures remain constant over the prediction
horizon and minimizes the network delay by changing the split ratios. The
subregional path assignment mechanism follows the same rationale and aims
to match the reconstructed split ratios with the ordered ones (see Equation
7) while maintaining the reconstructed average trip lengths in the vicinity of
observed ones (see Equation 7e). Accordingly, the objective function in the
ILP is the sum of absolute difference between θHIJ and θ̂HIJ values, and the
tolerance range of L̂IH with respect to LIH is added as a constraint in the
optimization problem. The value of ε, in this study, is 0.05. And, it has been
chosen such that the outflow from the regions is not largely affected by the
changing trip length values, and yet the overall framework is flexible enough
to follow the ordered split ratio signals. Note that the mismatch between
ordered and reconstructed patterns can always be taken into account in the
next time step by the feedback mechanism of the control framework, and
we observe that the results are not very sensitive to the changes within the
range ε ∈ [0.025, 0.10].

Additionally, ILP formulation presented in Equation 7 includes the set of
paths (i.e. Po) which requires the enumeration of alternatives between the
subregion pairs (in the same region). As the enumeration of all paths would
present computational difficulties at a large-scale region and include unreal-
istic routes, we limit our analysis with the first 5 physical (distance-based)
shortest paths between the subregion pairs. Therefore, the resulting scheme
does not offer a ”perfectly optimal” solution where few agents are largely
penalized to reach social equilibrium; instead, it considers limited willing-
ness of travellers to switch to alternative routes and provides a constrained
social equilibrium solution where no traveller is given an exceedingly long
path (similar to Jahn et al. (2005)). While SO conditions might generate
longer paths for a few users, with the above consideration, it is more likely
that users follow and comply with the outcome of guidance strategy. To
determine the shortest paths, we use the physical network properties (e.g.,
connectivity, distance) of the 49-subregion representation, just like one would
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do with a link-level representation of a network. In other words, we build
a graph where nodes are subregions and the neighboring nodes (as seen in
Figure 1) are connected to each other with an edge whose value is equal to
the subregional average trip length (i.e., lr). We then identify the shortest
paths between the subregions using this graph. An alternative to the static
(distance-based) choice set we use here might be to consider dynamic traf-
fic conditions and update the choice in every time step with the time-based
shortest paths. Nevertheless, our current framework, which builds on the
YALMIP toolbox, does not allow such changes because of the coding-related
limitations. While the toolbox makes development of optimization problems
very simple, it requires the ILP-based mechanism to be built in advance
with a choice set. Therefore, such dynamic changes in the choice set are not
possible.

Note that the subregion model that is used for testing the hierarchical
control does not appear anywhere inside the two levels of the hierarchical
control scheme. Hence, there is a significant difference between the models
used for optimization and the model used for replicating reality; the ”plant”.
The ILP-based path assignment mechanism does not use a dynamical model
at all; it simply relies on the physical network properties (e.g., connectiv-
ity, distance, etc.) that are easy to be collated. On the other hand, the
route guidance MPC uses the region model which is very different than the
subregion model in the following aspects: a) the region model considers the
aggregated representation of 7 subregions as a single region and scrutinizes
traffic flows between regions not subregions, b) the subregions have well-
defined MFDs, whereas the region MFDs are subject to heterogeneity effects
according to the congestion distribution at the subregional level (as modeled
by Equation 3).

4.1. Numerical results

To test the performance of the proposed hierarchical route guidance (RG)
scheme (the structure of which is given as a block diagram in Figure 2)
against a no control (NC) case, we conduct a simulation experiment based
on a congested scenario for the two cases. In both NC and RG, drivers receive
a path information when they enter the network or a new region, and the
actuations are updated every control time step (i.e. 4 minutes) to have a fair
comparison between the scenarios. Depending on trip to be made, the path
consists of sequence of subregions from origin subregion or region boundary
to the destination subregion or region boundary. In NC, the path decisions
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Figure 3: Results of the congested scenario, showing region accumulations NI(t) (a)-(b)
and heterogeneity coefficients ρI(t) (c)-(d) as functions of time, for the no control case
(a)-(c) and the hierarchical route guidance scheme (b)-(d).

reflect the shortest path based on instantaneous traffic conditions, while RG
assigns the vehicles to the paths produced by the hierarchical scheme. In
both NC and RG scenarios, the network starts empty but is exposed to
increased inflow demands as time progresses. As the vehicles are closer to
their origin than to their destination in the beginning of the simulation, the
first 20 minutes is considered the warm-up period and RG system is activated
after that.

Figure 3 shows the regional accumulations (Figure 3a and 3b) and het-
erogeneity coefficients as described by Equation 3 (Figure 3c and 3d) for the
two scenarios. The figure clearly indicates that the RG scheme is efficient in
alleviating congestion, whereas in the NC case, congestion cannot be avoided
in the city center (i.e. region 1). By comparing Figure 3a and 3b we observe
that the peripheral regions (i.e., regions 2 to 7) carry slightly more traffic in
RG scenario than in NC scenario, which in turn helps the central region stay
uncongested. In NC scenario, the accumulation in the central region escalates
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to very high values at around 100 min, and the network is not emptied at the
end of the 3-hour simulation. To have a fair comparison between the two sce-
narios, we run the simulation as long as there are vehicles in the system and
calculate the total time spent when all the vehicles reach their destination.
This calculation results in 2.32 · 104(veh.h) and 1.72 · 104(veh.h) for NC and
RG scenarios, respectively, which corresponds to around 27% improvement
with RG. An important reason that RG performs significantly better is not
only a subset of vehicles does not cross the center region, but also the level of
homogeneity is higher in the central region that further increases the outflow.
Note that, as presented in Eq. 2, low ρI values lead to low outflows from
the region. In NC scenario, a sharp decrease in the heterogeneity coefficient
(i.e. ρ1) signals the deterioration in the congestion distribution in region 1,
which is followed by high accumulation values in the same region. On the
other hand, RG strategy achieves to produce coefficient values close to 1 and
guarantees that congestion distribution stays consistent throughout the sim-
ulation in the central region. Additionally, in both NC and RG, we observe
that the heterogeneity coefficient in the peripheral regions seems to converge
to a value around 0.8 as the simulation progresses. This is mainly due to the
physical structure of the network; the subregions at the outer layer of the
network (e.g. subregions 10, 16 and 25) are rarely used by through traffic.
The traffic load they carry is inherently low compared with other subregions
in the region, which causes a lower heterogeneity coefficient for the region
they belong to. While the homogenization of the regions is not considered as
part of the objective function in the regional route guidance MPC, ILP-based
subregional path assignment accounts for the subregion speeds at the current
time step and constraints the change in region-to-region travel time through
Equation 9. This enables ILP to react to uneven distribution of congestion
and homogenize the traffic across subregions. Therefore, as Figure 3 depicts,
the improvement comes from both regional route discipline and increased
homogeneity within the regions. In the RG scenario, the accumulation in
the central region is significantly lower and the heterogeneity coefficient is
substantially higher.

Figure 4(a) and (b) depict the subregion accumulations of region 1 (i.e.,
the central region) in NC and RG scenarios, respectively. While accumulation
values are comparable across the scenarios in the first half of the simulation,
the central subregion (or subregion 1) starts attracting significant demand
at around 90 (min) and reaches gridlock state few minutes later. On the
other hand, although central subregion always carries a higher traffic, RG
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strategy ensures a greater level of homogeneity in the region and does not
cause gridlock state in any subregion. Figure 4(c) presents the production
MFD of region 1 in two scenarios which results from the accumulations in-
troduced in Figure 4(a) and (b). The city center suffers from a significant
capacity drop in NC scenario, while RG scenario is able to keep region 1 in
the uncongested regime and guarantee higher production values despite few
scatter (see the red circles in Figure 4(c)). Note that the capacity drop we
observe in NC scenario is due to the jump in the heterogeneity coefficient
values presented in Figure 3(c). The difference in MFD patterns is also re-
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Figure 4: Results of the congested scenario comparing subregion accumulations of region
1 (a)-(b), production MFDs of region 1 (c), and the network production as a function
of time (d), for the no control case (NC) (a) and the hierarchical route guidance scheme
(RG) (b).
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flected in the overall network production; Figure 4(d) shows that RG is able
to produce higher production during the peak hour and empty the network
earlier than NC scenario. Note the non-zero production values in NC at the
end of the simulation.

Figure 5 presents the average trip length values that result from NC and
RG scenarios in region 5. As can be seen from Figure 1, region 5 has 3
neighboring regions. Hence, including the internal trips, Figure 5 depicts 4
curves separately for NC and RG scenarios. At the start of the simulation,
most vehicles are closer to their origin than to their destination; therefore,
the outflow values are very small and the average trip length values are very
high. However, we note that, in all scenarios, they quickly converge to stable
values (like a warm up period). The average trip lengths to neighboring
peripheral regions (i.e. L54 and L56) slightly increase after the activation of
RG, while the one to the central region (i.e. L51) and to itself (i.e. L55)
remain more or less the same. This is due to the change in the assignment
patterns; as there are more vehicles using the peripheral network with the
implementation of RG, it is not possible to keep the average trip length values
at the low level observed in NC. However, both L54 and L56 quickly converge
to slightly higher values and remain approximately stable until the network
unloading stage. The simulation ends with relatively low distance values in
both scenarios as a result of the region being emptied and most vehicles being
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Figure 5: Average trip length values in region 5.
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closer to their destination. Trip length graphs for other peripheral regions
are omitted due to space limitation. Nevertheless, they represent similar
patterns.

Figure 6 compares NC with RG regarding the proportion of accumula-
tions (i.e. NH

IJ/NIJ) and presents the ordered and reconstructed split ratios

(i.e. θ and θ̂) in RG. Note that split ratios apply to transfer flows (between
regions) and the newly generated exogenous demand, while the proportion
of accumulation defines the route choice patterns for all circulating vehicles.
For the illustration purposes, we choose the vehicles traveling from region 5
to regions 2 and 7. As previously mentioned, the first 20 min of the simula-

0 20 40 60 80 100 120 140 160 180

time [min]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ac
c.

 p
ro

po
rt

io
n N 1

52/N52 - NC

N 4
52/N52 - NC

N 6
52/N52 - NC

N 1
52/N52 - RG

N 4
52/N52 - RG

N 6
52/N52 - RG

(a)

0 20 40 60 80 100 120 140 160 180

time [min]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sp
lit

 r
at

io

θ1
52

θ4
52

θ6
52

θ̂1
52

θ̂4
52

θ̂6
52

(b)

0 20 40 60 80 100 120 140 160 180

time [min]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ac
c.

 p
ro

po
rt

io
n

N 1
57/N57 - NC

N 4
57/N57 - NC

N 6
57/N57 - NC

N 1
57/N57 - RG

N 4
57/N57 - RG

N 6
57/N57 - RG

(c)

0 20 40 60 80 100 120 140 160 180

time [min]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sp
lit

 r
at

io

θ1
57

θ4
57

θ6
57

θ̂1
57

θ̂4
57

θ̂6
57

(d)

Figure 6: (a), (c) Resulting accumulation proportions in NC and RG; (b), (d) Ordered

and reconstructed split ratios, θ and θ̂, in RG for vehicles going from region 5 to regions
2 and 7.
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tion is considered the warm-up period during which RG is not active. That
is why accumulation proportions are the same for NC and RG in the first 20
min (see Figure 6(a) and 6(c)).

Figure 6(a) and 6(b) introduce the accumulation proportions and split
ratios, respectively, for the vehicles traveling from region 5 to 2. All vehi-
cles start off by choosing region 1 in NC (see Figure 6(a)), as it provides
the (physical) shortest alternative (see Figure 1). Due to changing traffic
conditions, after t = 50(min), alternative paths that do not cross the cen-
tral region become more appealing, and some vehicles start using the idle
capacity at the periphery of the network. However, this does not save the
central region from getting overly congested. On the contrary, RG, after be-
ing activated at t = 20(min), assigns 0-35% of the (newly entering) demand
to the peripheral regions (see the red and yellow curves in Figure 6(b)) and
ensures that the central region has a more balanced distribution of accumu-
lation (see Figure 6(a)). Note that the ordered and reconstructed split ratios
in Figure 6(b) are very close to each other for this particular demand pair
throughout the simulation. Figure 6(c) and 6(d) present the split ratios and
accumulation proportions, respectively, for the vehicles traveling from region
5 to 7. According to the regional representation of the network (see Figure
1), the central region 1 and the peripheral region 6 provide equally appealing
alternatives (in terms of distance). In NC scenario, initially, approximately
30% of the accumulation crosses the central region; however, in response to
hyper-congestion in the center, travelers switch to peripheral regions towards
the end of the simulation. On the other hand, RG guides almost all the ve-
hicles through the peripheral region 6 and protects the central region from
congestion. Note that regional split ratios are rapidly changing in RG at the
end of the simulation, which is due to the network being emptied. Turning
RG off below a certain accumulation level could easily prevent this behavior,
but is not expected to significantly change the results as there are very few
vehicles in the network within this period.

Figure 7 and 8 provide a series of snapshots over time that depicts the
evolution of regional and subregional accumulations in the network, respec-
tively. In Figure 7, we see that congestion is rather evenly distributed across
the regions in RG, while NC scheme is overloading the central region. Note
that the central region has some residual accumulation at the end of the time
horizon, while the network is completely emptied in RG. Figure 8 provides
a zoom-in view of the accumulations in the network. We observe that the
subregions at the outermost layer of the network are used at below their
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Figure 7: Evolution of region accumulations over time (min). (a) NC, (b) RG.
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Figure 8: Evolution of subregion accumulations over time (min). (a) NC, (b) RG.
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capacity throughout the simulation in both scenarios. As these subregions
are not critical in terms of the network connectivity, they are mostly used by
vehicles entering or leaving the network through them. In addition, we note
that the subregion at the core of the network (subregion 1 in Figure 1) gets
gridlocked (i.e. reaches jam accumulation) at around 120 min, and it cannot
be rescued from that state until the simulation end. In overall, these results
show that the RG scheme can distribute congestion evenly over the network
using the authority over path assignment and route guidance, leading to an
efficient use of network capacity and ultimately to increased mobility.

4.2. Comparison with Perimeter Control Actuated MPC

To evaluate the performance of the proposed hierarchical control scheme
in comparison with a perimeter control case, an MPC with only perimeter
control type actuation is tested using the simulation experiment with the
congested scenario. The perimeter control MPC is constructed in a simi-
lar vein with the proposed regional route guidance MPC: the multi-region
MFDs network based MPC formulation from Sirmatel and Geroliminis (2018)
is extended with heterogeneity variance and dynamic trip length terms as in
equation (10), while perimeter control inputs (i.e. UIJ(t)) are introduced into
the formulation as decision variables and the regional split ratios θHIJ(t) are
defined as measurements (for the MPC) that are assumed constant for the
prediction horizon. On the subregion level the drivers are free to choose their
own routes as in the no control case. As the perimeter control MPC could
not cope with the gridlock-level congestion in subregion 1 due to the increas-
ing inhomogeneity, it is supplemented with a simple bang-bang perimeter
controller that protects this subregion from severe congestion. Note that
while the perimeter control MPC controls the boundaries between regions,
the bang-bang controller restricts the inflow from subregions 2-7 to subre-
gion 1. In fact, incorporation of the bang-bang controller adds 6 new borders
to be controlled in the network, and in a real-world context, it may not be
always possible to control the intersections in the city center (represented by
region 1). However, to conduct a fair comparison here, we design a perime-
ter control (PC) strategy that combines the MPC actuations at the region
boundaries and the bang-bang actions at the border of subregion 1. A dis-
cussion on why the perimeter control MPC itself does not work properly will
be provided in the following paragraph.

Figure 9(a) presents the accumulation of region 1 for NC, RG and PC (i.e.
MPC+bang-bang) scenarios. We clearly see that although PC can improve
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Figure 9: (a) Accumulation of region 1 in the no control case (NC), the proposed route
guidance (RG), and the perimeter control (PC), (b) Perimeter control input U61(t) for the
PC case, (c) Production MFDs in region 1.

over the NC scenario by protecting region 1, it is not as effective as RG in the
alleviation of congestion. Figure 9(b) presents the perimeter control action
at the boundary between regions 6 and 1, which corresponds to the border
between subregions 38 and 6 at the plant. While the maximum outflow is
maintained at the border until around 100 (min), the controller reacts to the
increasing accumulation in region 1 in the following time steps and restricts
the inflow to the region 1. However, PC is not able to clear the network until
the end of the 3-hour simulation. As in NC scenario, we run the simulation
until the network is empty in PC scenario and calculate the total time spent
in the network. PC results in 2.12 · 104(veh.h), which presents around 9%
improvement over NC scenario, while RG yields 27% reduction in the total
time spent. Finally, Figure 9(c) compares the production MFDs of region 1
in three cases: observations from the plant, production model with hetero-
geneity coefficient presented in Equation 3 and production model with full
homogeneity assumption (upper envelope for the production values). Note
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that this analysis represents a scenario where the perimeter control only con-
sists of MPC actuations. We clearly see that the production estimation with
the heterogeneity model does not provide an accurate approximation for the
plant measurements. As only one subregion is very congested and the oth-
ers are not, region 1 exhibits a highly imbalanced congestion scenario where
the production model with heterogeneity coefficient fails to provide accurate
estimations. We observe that the resulting heterogeneity coefficient values
push the production estimations further down than the plant measurements.
This is the main reason why perimeter control MPC itself cannot cope with
the congested scenario in hand. On the other hand, RG strategy improves
the homogeneity inside the regions, keeps the traffic states within the limit
of trackable values and improves the traffic conditions in the network.

4.3. Sensitivity of the model

In this subsection, we test the sensitivity of our model with respect to
certain design and scenario features; in particular (1) compliance rates of
drivers to the guidance information, (2) path assignment characteristics (i.e.,
all-or-nothing vs. partial flows) and (3) noise in the plant characteristics
(i.e., randomness in the subregion MFD).

First, we test our strategy with lower compliance rates. We keep the
same formulation for the subregional path assignment and the regional route
guidance, where we assume full compliance of users (note that the design of
controller does not explicitly consider a given compliance rate). Nevertheless,
at the testing stage, we provide the resulting αpo,d values only with the com-
plying users and let the other users make route choice decisions in accordance
with NC scenario. Figure 10(a) presents the accumulation values in region
1 (supposedly the most congested region) resulting from a number of com-
pliance rates. Clearly, the higher the compliance rate is, the less congested
region 1 becomes. Nevertheless, all the scenarios produce considerably better
traffic conditions than NC scenario. Even with 25% compliance rate, traf-
fic conditions are significantly improved and hyper-congestion (values higher
than critical accumulation N cr= 3333 veh) is avoided. That means, even
a small percentage of users complying with the guidance information and
avoiding potentially congested parts of the network, can bring major bene-
fits to the system. The network performance with low compliance rates is
similar to the full-compliance RG scenario, the resulting total time spent in
the network is only 2-4% higher than that of 100% compliance scenario.
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Figure 10: (a) Accumulation in region 1 with varying compliance rates, (b) accumulation
in all regions with continuous and integer decision variables in the subregional path assign-
ment formulation, (c) subregion MFD with uniformly distributed random noise between
lower and upper bounds, (d) region accumulations resulting from the RG scenario with
and without noise in subregion MFD.
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Second, assuming that there may not be always enough demand to ac-
commodate continuous split ratios (between the boundary nodes), we have
applied all-or-nothing assignment and defined αpo,d as a binary variable. To
test the effects of this assumption, we now describe it as a continuous variable
between 0 and 1 and reformulate the subregion assignment mechanism as a
linear programming (LP) problem. Figure 10(b) depicts the accumulation
evolution in all regions for ILP and LP formulation. None of the regions
exhibits a significant difference; however, we note minor changes particularly
for region 1 between 60 min and 120 min. LP formulation leads to sta-
ble accumulation values within this period, while ILP formulation produces
small up-and-downs. As LP can achieve a better tracking of signals (θHIJ
and LIH) by adjusting continuous path flow distributions, it creates a more
consistent accumulation profile even in the most congested period. Note that
we do not observe a meaningful change in the performance measures across
the two scenarios, which indicates that the model can as well be useful with
all-or-nothing assumptions.

Third, we investigate the effect of additional noise in the plant charac-
teristics. The purpose of the detailed 49-subregion simulator is to create
a significant difference between what the model knows during optimization
(i.e. 7-region model) and what influence comprehensive plant characteristics
might have. The subregion model provides a simulation environment where
many of the assumptions in the region model are released. For example,
while routing is achieved with split ratios (θHIJ) in the region model, subre-
gional paths are incorporated into the plant in order to navigate the vehicles
around the network. Nevertheless, we acknowledge that MFDs at the sub-
regional level might experience scatter too (as link FDs do). Therefore, we
release the assumption of deterministic MFDs at the subregional level, and
we incorporate noise into the subregion MFD values. Figure 10(c) depicts the
resulting subregion MFD curve along with its mean, upper and lower bounds.
We assume that the production value corresponding to a certain accumula-
tion level is uniformly distributed between upper and lower bounds. Note
that the noise increases with accumulation in the region, which is consistent
with the observations from real data and microscopic simulation models. We
then incorporate the random MFD curves into our framework and apply the
proposed model to evaluate the impact of noise on the overall performance.
Figure 10(d) compares the regional accumulation values resulting from the
scenario with noise to the base scenario where we assume deterministic MFD
curves for the subregions. While the new scenario with noise leads to higher
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accumulation values and greater variation in the central region (the most
congested region), the framework is capable of mitigating the congestion.
Total time spent in the two scenarios is very similar, which indicates the
robustness of the proposed algorithm to the noise involved in estimations.

5. Conclusion

In this paper, we propose a hierarchical traffic management scheme based
on path assignment and route guidance and report improved mobility in
large-scale urban road networks. We describe region-level and subregion-level
MFD-based dynamical traffic models and use them as a prediction model (for
MPC) and as an evaluation model (i.e. plant), respectively. The contribu-
tions of the paper are twofold; (1) developing an ILP-based path assignment
mechanism that can translate upper-level and aggregated control actuations
into lower-level and disaggregated traffic decisions, (2) incorporating het-
erogeneity effect and variable trip lengths into the regional route guidance
MPC framework. Efficiency of the proposed hierarchical scheme is tested in
simulations in a 49 subregion network. The results indicate a great poten-
tial in making efficient use of network capacity via actuation over paths and
achieving improved mobility. Such a hierarchical traffic management scheme
can be implemented in real life applications, if data from GPS and loop de-
tectors are combined to estimate the state variables described in the paper.
Additionally, the proposed RG strategy is compared with the well studied
perimeter control system and is proven to be more effective in congestion
alleviation.

Future research should study the integration of the route guidance system
with the perimeter control strategy, which is expected to further improve
homogeneity and network performance. The perimeter control decisions that
are optimized based on the region-based model could be further refined at the
lower level (i.e. plant) through feedback controllers and limited traffic state
information (as proposed by Ramezani et al. (2015)). Designing a realistic
and accurate information feedback from the plant to the optimization or
operation model needs further investigations. In addition, future research
should look into replacing the subregional representation of the lower-level
network with a more detailed link-level modeling of traffic.
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