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Abstract— Network-level road traffic control remains a chal-
lenging problem. Macroscopic fundamental diagram (MFD)
based dynamical models of large-scale urban networks enable
development of model predictive perimeter control methods,
which represent an efficient congestion control solution with
substantial potential for practical implementation. In this pa-
per we propose a model-based system identification method
for computing the MFD parameters given measurements on
historical trajectories of the traffic state and inflow demand.
Furthermore, nonlinear moving horizon estimation (MHE) and
model predictive control (MPC) formulations for MFD-based
dynamics are presented, which enable high-performance traffic
control under severe measurement noise. Microsimulation-
based case studies, considering an urban network with 1500
links, where the MFD parameters obtained by the identification
method are used in MHE and MPC design, demonstrate the
operation of the proposed framework.

I. INTRODUCTION

Modeling and control of road traffic in large-scale urban
networks present considerable challenges. Large network
size, inadequate infrastructure and coordination, spatiotem-
poral propagation of congestion, and the interaction between
driver decisions and the traffic control system contribute
to the difficulties faced when creating realistic models and
designing effective control schemes for urban networks.
Although considerable research has been directed towards
designing efficient real-time traffic control schemes in the
last decades (see [1] for a review), dynamical modeling and
control design for heterogeneously congested networks at the
city level remains a challenging problem.

Substantial research effort has been directed towards de-
veloping methods for modeling and control of urban traffic,
which usually focus on mesoscopic models keeping track of
link-level traffic dynamics with control strategies using local
information. Based on the linear-quadratic regulator (LQR)
problem, traffic-responsive urban control [2] represents a
multivariable feedback regulator approach for network-wide
urban traffic control, which has been tested both via sim-
ulations and field implementations (see [3], [4]). Inspired
by the max pressure routing scheme for wireless networks
[5], many local traffic control schemes have been proposed
for networks of signalized intersections (see [6], [7]), which
involve evaluations at each intersection requiring information
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exclusively from adjacent links. Although the high level of
detail in mesoscopic traffic models is desirable for simulation
purposes, the increased model complexity results in compli-
cations for control, whereas local control strategies might not
be able to operate properly under heavily congested condi-
tions, as they do not protect the congested regions upstream.
Another disadvantage of sophisticated local controllers is the
need for highly detailed information on traffic states of the
links, which are difficult to estimate or measure.

Considering severe model uncertainty, difficulty of in-
strumentation, and excessive computational burden associ-
ated with detailed link-level modeling and control methods
that need to consider all intersections and traffic lights for
managing traffic in the entire city, such traffic management
approaches appear to be practically infeasible. As an alter-
native to these link-level approaches, network-level methods
employing perimeter control (i.e., control with actuation
over a set of traffic lights on the perimeter between two
neighborhood-sized areas) are receiving increasing attention
as practicable approaches for city-wide traffic control. Based
on macroscopic modeling of heterogeneously congested ur-
ban road networks, perimeter control involves manipulation
of macroscopic traffic flows (i.e., rate of vehicles transferring
between neighborhood-sized areas). However, employing ag-
gregated modeling and control approaches using only a small
subset of all intersections as actuators, the perimeter control
method shows substantial promise in alleviating congestion
and improving mobility in large-scale urban networks.

In the first step of the method, a heterogeneously con-
gested city-sized road network is partitioned into a set
of regions with homogeneous distribution of congestion,
enabling development of macroscopic traffic models. Then,
a set of traffic lights on the boundaries (i.e, at the perimeters
of the regions) between the regions are instrumented to
be used as the actuators that can manipulate vehicle flows
between the regions. After installing sensors over the city to
measure the number of vehicles in each region (possibly also
their destination regions), it is possible to construct feedback
perimeter control systems for managing traffic and improving
mobility at the city scale. Using various control design
techniques, many perimeter control (or gating) methods have
been developed for single-region [8], [9], [10] and multi-
region [11], [12], [13] urban networks.

Macroscopic fundamental diagram (MFD) of urban traffic
emerged as the primary modeling tool enabling development
of aggregated modeling and control approaches for large-
scale traffic dynamics. An urban region with roughly homo-
geneous accumulation (i.e., small spatial link density het-
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erogeneity) can be modeled using the MFD, which provides
a unimodal, low-scatter, and demand-insensitive relationship
between accumulation and trip completion flow. MFD as
a concept was first proposed in [14], and experimentally
proven to exist for urban areas recently in [15]. Using MFD
it is possible to express the rate of vehicles exiting traffic in
a region (either through ending the trip inside the region or
transferring to an adjacent region) as a function of the region
accumulation [15].

Although a powerful modeling tool, the MFD has also its
challenges that might undermine its accuracy in expressing
urban traffic dynamics: (a) Heterogeneous distribution of
accumulation, especially in congested conditions, leads to
the loss of a well-defined MFD for the urban region (see
[16], [17], [18], [19]), (b) hysteresis phenomena leading to
different behaviors in the MFD shape for the onset and
offset of congestion (see [20], [21]). While heterogeneously
congested networks do not exhibit well-defined MFDs, using
clustering methods the network can be partitioned into a
set of homogeneously congested (i.e., with low link density
variance) regions, which can result in a set of well-defined
MFDs for each region (see [22], [23], [24]). Despite its
shortcomings, the MFD substantially reduces the complexity
of traffic models by avoiding the need for considering the
densities of individual links of the network, which number
in the thousands for city-scale systems. Appearing thus as an
efficient modeling tool for expressing aggregated dynamics
of urban traffic, the MFD enables the design of model-based
control methods for network-level road traffic management.

Application of model predictive control (MPC) to traffic
control problems saw increased interest in the ITS literature
in the last 15 years. Many MPC based methods for various
settings of traffic control have been proposed: Ramp metering
for freeway networks, variable speed limits, integrated route
guidance and variable speed limits for freeway networks, and
signal control for urban networks [25], [26], [27], [28], [29].

MFD-based MPC schemes for urban traffic began to
appear recently in the literature: Nonlinear MPC for a
two-region network actuated with perimeter control [13],
hybrid MPC with perimeter control and switching signal
timing plans [30], dynamical modeling of heterogeneity and
hierarchical control with MPC on the upper level [31], MPC
with MFD-based travel time and delays as performance mea-
sures [32], two-level hierarchical MPC with MFD-based and
link-level models [33], multimodal MFDs network model-
based MPC of city-scale ride-sourcing systems [34], MPC
with perimeter control and regional route guidance [35]
and extensions with a path assignment mechanism [36]. A
more detailed literature review of MFD-based modeling and
control can be found in [37].

Works on MFD-based control either employ control de-
sign based on known MFDs tested with macroscopic (i.e.,
MFD-based) simulations using artificial uncertainty on the
MFDs ([13], [30], [38]), or control design based on MFDs
obtained by fitting polynomials to historical data tested with
microscopic simulations ([12], [39], [33], [40]). Thus, we
identify two points as gaps to be addressed in the MFD-

based control literature: (1) Using system identification to
estimate MFD-based model parameters remains unexplored,
(2) although there is recent work considering state estimation
with MFDs (see [38]), there are no results on state estimation
with realistic tests employing microscopic simulation. Here
we address the first point by a model-based parameter esti-
mation (MBPE) formulation with MFD-based models, which
employs the least squares prediction error method [41] from
system identification literature. As an application example,
the formulations of nonlinear moving horizon estimation
(MHE) and economic nonlinear MPC schemes are given,
which are intended to operate using the MFD parameters
computed by the proposed MBPE method. Finally, realistic
simulation studies, addressing the second point, employing
the microscopic simulation package Aimsun are presented to
demonstrate performance of the proposed methods.

II. MODELING

Consider a city-scale road traffic network, consisting pos-
sibly of hundreds of links and intersections, with heteroge-
neous distribution of accumulation (i.e., number of vehicles)
on its links. Empirical results indicate that the MFD can be
approximated by an asymmetric unimodal curve skewed to
the right [15], which can, for example, be chosen as a third
degree polynomial:

gi(ni(t)) = ain
3
i (t) + bin

2
i (t) + cini(t), (1)

where ni(t) (vehicles; abbreviated henceforth as veh) is
the accumulation of region i, gi(ni(t)) (veh/s) is the trip
completion flow of the region (i.e., rate of vehicles exiting
traffic), whereas ai, bi, and ci are model parameters.

Given a network R consisting of a set of R regions (R =
{1, 2, . . . , R}), each with a well-defined MFD, aggregated
dynamical models of large-scale road traffic networks can
be developed based on interregional traffic flows as the
following vehicle conservation equations [13], [31] :

ṅii(t) = qii(t)−mii(t) +
∑
h∈Ni

uhi(t)mhii(t) (2a)

ṅij(t) = qij(t)−
∑
h∈Ni

uih(t)mihj(t)

+
∑

h∈Ni;h 6=j

uhi(t)mhij(t), (2b)

where nii(t) (veh) and nij(t) (veh) are state variables
expressing the accumulation in region i with destination
region i and j, respectively (with ni(t) =

∑R
j=1 nij(t)),

qii(t) (veh/s) and qij(t) (veh/s) are disturbances expressing
the rate of vehicles appearing in region i demanding trips
to destination region i and j, respectively, uih(t) ∈ [

¯
u, ū]

(with 0 ≤
¯
u < ū < 1) are control inputs between each pair

of adjacent regions i and h expressing actions of perimeter
control actuators (with h ∈ Ni; whereNi is the set of regions
adjacent to i) that can manipulate vehicle flows transferring
between the regions, mihj(t) (veh/s) is the vehicle flow
attempting to transfer from i to h with destination j:

mihj(t) , θihj(t)
nij(t)

ni(t)
gi(ni(t)), (3)



where θihj(t) ∈ [0, 1] is the route choice term expressing,
for the vehicles exiting region i with destination j, the ratio
that is transferring to region h (with mhii(t) and mhij(t)
defined similarly), whereas mii(t) (veh/s) is the exit (i.e.,
internal trip completion) flow of region i:

mii(t) ,
nii(t)

ni(t)
gi(ni(t)). (4)

Route choice effect can be omitted in modeling if the
network topology leads to a single obvious route choice,
in which case θihj(t) = 1 for all time for only one region
h ∈ Ni for each i-j pair (with j 6= i). The focus in this paper
is on those networks where route choice can be omitted (see
[35] for a study where it is included).

Assuming additive process and measurement noise, the
dynamics (2) and measurement can be written as:

ṅ(t) = f(n(t), q(t), u(t), p) + w(t), (5)
yn(t) = n(t) + vn(t) (6)
yq(t) = q(t) + vq(t) (7)

where n ∈ RR2

(state) and q ∈ RR2

(measured distur-
bance) are the vectors of accumulations and inflow demands,
respectively, u ∈ R2·ma (control input) is the vector of
transferring flow restrictions between adjacent regions via
perimeter control actuators (with ma the number of adjacent
region pairs), p ∈ RR·mp is the model parameters vector
(containing the MFD parameters ai, bi, and ci given in
(1) for each region; with mp the number of parameters
associated with the MFD of one region), w ∈ RR2

is the
process noise expressing uncertainty in the dynamics (with
w ∼ N (0,Σw)), yn ∈ RR2

and yq ∈ RR2

(measurement)
are the measured values of n and q, respectively, whereas
vn ∈ RR2

and vq ∈ RR2

are the measurement noise vectors
(with vn ∼ N (0,Σvn) and vq ∼ N (0,Σvq )).

III. IDENTIFICATION, ESTIMATION, AND CONTROL

In this section we present formulations of model-based
identification, estimation, and control for large-scale urban
road networks with MFD-based dynamical models. Via
identification the model parameters can be extracted from
offline data, which can then in practice be used online for
traffic management employing the presented estimation (for
filtering out noise from real-time traffic state measurements)
and control (for improving mobility by manipulating macro-
scopic traffic flows via perimeter control) methods.

A. System Identification

Based on the prediction error method [41], we can for-
mulate the problem of obtaining the MFD parameters with
the best least squares fit between the measured and predicted

trajectories of n(t) and q(t) as the following MBPE problem:

min.
p,nk,qk

K−1∑
k=0

‖wk‖2Q +

K∑
k=0

(
‖vn,k‖2Rn

+ ‖vq,k‖2Rq

)
(8)

s.t. for k = 0, . . . ,K :

yn(kT ) = nk + vn,k

yq(kT ) = qk + vq,k

0 ≤ nk ≤ n̄
0 ≤ qk ≤ q̄

for k = 0, . . . ,K − 1 :

nk+1 = F (yn(kT ), yq(kT ), u(kT ), p) + wk

where k is the time interval counter of the MBPE, K is
the identification horizon, wk, vn,k, and vq,k are vectors of
auxiliary variables internal to the MBPE representing the
process noise, and measurement noises associated with the
accumulation state and inflow demand, respectively, Q, Rn,
and Rq are the inverse covariance matrices of the process
noise, and measurement noises associated with the accumula-
tion state and inflow demand, respectively, T is the sampling
time, yn(t) and yq(t) are measurements on the accumulation
state n(t) and inflow demand q(t), respectively, nk and qk are
the accumulation state and inflow demand vectors internal to
the MBPE, respectively, n̄ and q̄ are upper bounds on the
accumulation state and inflow demand (possibly obtained
from an analysis on historical data), respectively, F is the
discrete-time version of the dynamics given in (5), whereas
u(t) is the known (recorded in the recent past) vector of
perimeter control inputs.

Owing to the prediction error method involving one-step
ahead predictions, and the dynamics (5) being linear in the
MFD parameters, the MBPE problem (8) is a convex opti-
mization problem that can be solved reliably and efficiently.

B. Moving Horizon Estimation

We formulate the problem of finding state estimate trajec-
tories for a moving time horizon extending a fixed length into
the past, striking a trade-off between measurements and the
prediction model, as the following nonlinear MHE problem
(based on the work in [38]):

min.
wk

−1∑
k=−Ne

‖wk‖2Q +

0∑
k=−Ne

(
‖vn,k‖2Rn

+ ‖vq,k‖2Rq

)
(9)

s.t. for k = −Ne, . . . , 0 :

yn(t+ kT ) = nk + vn,k

yq(t+ kT ) = qk + vq,k

0 ≤ nk ≤ n̄
0 ≤ qk ≤ q̄

for k = −Ne, . . . ,−1 :

nk+1 = F (nk, qk, u(t+ kT ), p̂) + wk

where k is the time interval counter of the MHE, Ne is the
estimation horizon, wk, vn,k, and vq,k are vectors of auxiliary
variables internal to the MHE representing the process noise,



and measurement noises associated with the accumulation
state and inflow demand, respectively, nk and qk are the
accumulation state and inflow demand vectors internal to
the MHE, respectively, whereas p̂ is the vector of model
parameters obtained via MBPE as the solution of (8).

C. Model Predictive Control

The problem of finding the control inputs that minimize
total time spent (TTS) for a finite horizon can be formulated
as the following economic nonlinear MPC problem (based
on the work in [13] and [38]):

min.
uk

T ·
Nc∑
k=1

1Tnk (10)

s.t. n0 = n̂t(t)

|u0 − u(t− T )| ≤ ∆u

for k = 0, . . . , Nc − 1 :

nk+1 = F (nk, q̂t(t), uk, p̂)

¯
u ≤ uk ≤ ū

for k = 1, . . . , Nc :

ni,k ≤ ni,jam ∀i ∈ R,

where k is the time interval counter of the MPC, Nc is the
prediction horizon, nk and uk are the state and control input
vectors internal to the MPC, respectively, n̂τ (t) and q̂τ (t) are
estimates of the accumulation state n(t) and inflow demand
q(t) for time τ available at current time t (obtained via MHE
as the solution of (9)), ∆u is the rate limiting parameter
on control inputs,

¯
u and ū are the control input constraints,

whereas ni,k is the total accumulation in region i.
Due to the nonlinear dynamics (5), the MHE and MPC

problems given in eqs. (9) and (10), respectively, are noncon-
vex nonlinear optimization problems, which can be solved
efficiently via, e.g., sequential quadratic programming or
interior point solvers (for details, see [42]).

IV. RESULTS

A. Network Setup

An urban road network consisting of roughly 1500 links
and 600 intersections is replicated as a computer model using
the microscopic simulation package Aimsun. The model
represents a portion of the urban network of the city of
Barcelona in Spain, covering an area of 12 km2. The network
is partitioned into four regions using the optimization-based
clustering method of [23], where minimizing heterogeneity
is considered in the objective function and cluster contiguity
is enforced via constraints. The network model is taken from
[39]; the reader is referred to that study for further details
on the network.

B. Identification Results

Accumulation state and inflow demand trajectories n(t)
and q(t) are obtained by simulating a congested scenario
for the network in using the Aimsun microscopic simulation
framework. To reflect measurement noise, random noise
terms vn(t) and vq(t) are added to the true trajectories to
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Fig. 1. Outflow as a function of regional accumulation for (a) region 1,
(b) region 2, (c) region 3, (d) region 4, comparing the true outflow (blue),
with the MFDs obtained by the MBPE method (red).

obtain the noisy measurements yn(t) and yq(t). Covariances
of the noise terms are chosen as Σvn = Iσvn and Σvq =
Iσvq , with σvn = 250 veh and σvq = 0.1 veh/s, representing
moderate amount of noise. A no control scenario is consid-
ered, which employs well-tuned fixed perimeter control input
values. The network is empty at the beginning and faces
increasing inflow demands. The demands are nonzero for
the first 2 hours of the simulation, while the total simulation
length is 8 hours to ensure that the network is empty also
at the end of the simulation (to be able to compare different
cases). With a sampling time of T = 90 s, the simulation
length is K = 320 time steps. Given the measurements on
accumulation and inflow demand trajectories, the optimiza-
tion problem (8) is solved to obtain the MFD parameters.

The MFDs obtained by the proposed MBPE method are
shown in fig. 1, where they are compared with the true
values of the outflow as a function of regional accumulation
gi(ni(t)) (i.e., those obtained from microsimulation).

Overall, these results suggest that the proposed MBPE
method is able to obtain MFDs that make physical sense, as
they have a good qualitative match with the true outflows.
However, the ultimate test for the obtained MFDs is usage in
traffic estimation and control for improving mobility, which
is examined in the following sections.

C. Estimation and Control Results

The MFDs (i.e., the model parameters vector p̂) obtained
by the MBPE method are used in the MHE and MPC
schemes to control the urban network via perimeter control
actuation for improving mobility under situations with noisy
measurements. The MHE and MPC scheme is built using
direct multiple shooting [43], while the dynamics are dis-
cretized with the Runge–Kutta method with a sampling time
of T = 90 s. The implementation is done using MPCTools
[44], which is an interface to CasADi [45], with IPOPT
[46] as solver, in MATLAB 8.5.0 (R2015a), on a 64-bit
Windows PC with 3.6-GHz Intel Core i7 processor and 16-
GB RAM. Estimation and prediction horizons are chosen as
Ne = 20 and Nc = 20, following the tuning results of [38]
and [13], respectively. The perimeter controls are bounded
via

¯
u = 0.1 and ū = 0.9, with a rate limit of ∆u = 0.1.

Simulation length is K = 320 in number of time steps,



corresponding to 8 hours of real time, as in the no control
case. The combined estimation and control scenario is sim-
ulated using the Aimsun microscopic simulation framework
together with stand-alone MHE and MPC executable gener-
ated using MATLAB. The simulation operates by evolving
traffic conditions through Aimsun, where the MHE-MPC
code is called every 90 seconds. The MHE code, given recent
measurements of accumulation yn(t) and inflow demands
yq(t), solves (9) to find the accumulation state and inflow
demand estimates n̂(t) and q̂(t). Then the MPC code, given
n̂(t) and q̂(t), solves (10) to find the perimeter control inputs
u∗k (with k = 0, . . . , Nc−1). Only the first one of these (i.e.,
u∗0) is applied, which is realized in Aimsun by changing the
duration of the green phases of the 28 predefined signalized
intersections (out of about 600 in the network. The whole
procedure is repeated at the next time step for 320 time steps.

The estimation results are shown in fig. 2, which depicts
four selected accumulation trajectories (with measured, true,
and estimated values) for a single Aimsun simulation with
the combined MHE-MPC scheme. These figures suggest
that the MHE scheme is able to obtain decent estimation
performance, as indicated by the good match between the
true and estimated accumulation state trajectories. Moreover,
the regional accumulations for the no control, the combined
MHE-MPC scheme, and the MPC with perfect measurement
(named n-MPC) (i.e., n̂(t) = n(t) and q̂(t) = q(t)), are
shown in fig. 3. The results indicate that MPC is capable
of improving mobility compared to the no control case, as
suggested by the regional accumulation trajectories, where it
can decrease accumulations (and thus, the total time spent by
vehicles in the network) and clear the network much faster.
Overall, for the considered demand scenario, an improvement
(in terms of total time spent in the network) of 25% is
obtained through n-MPC and 20% for the MHE-MPC.
These results indicate that: (a) The proposed MBPE method
can lead to improved mobility when the MFD parameters
obtained by the method are used in the MHE and MPC
schemes, (b) the proposed MHE-MPC scheme is capable
of traffic management under situations with noisy measure-
ments, showing high potential for practical implementation.
Moreover, the total CPU time of the MHE-MPC scheme is
around 5 s (which is roughly negligible with respect to the
sampling time of 90 s), indicating the real-time feasibility of
the proposed scheme.

V. CONCLUSION

In this paper we proposed application of an MBPE method
to the identification of MFD-based dynamical models for
large-scale urban road networks. Nonlinear MHE and MPC
methods, employing the model parameters identified offline
by the proposed MBPE method, are used in microscopic
simulations for demonstrating applicability of the methods
in a realistic setting. The results suggest potential for field
applications of MFD-based feedback perimeter control.

Future work could include: (a) Comparisons of the pro-
posed MBPE method with more standard approaches such
as fitting polynomials for obtaining the MFDs, (b) sensitivity
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Fig. 2. Four selected accumulation state nij(t) trajectories of the Aimsun
simulation with combined MHE-MPC scheme, showing the measured
(blue), true (red), and estimated (yellow) values of: (a) n14(t), (b) n23(t),
(c) n32(t), (d) n44(t).

analyses of MFD parameter estimation methods to noisy
measurements, (c) testing various MFD-based models in
model-based control of congested networks.
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