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Abstract— Perimeter control schemes proposed to alleviate
congestion in large-scale urban networks usually assume perfect
knowledge of the accumulation state and inflow demands, both
requiring information about the origins and destinations of
drivers. Such assumptions are problematic for practice due
to measurement noise and difficulty of obtaining OD-based
information. We address these by a nonlinear moving horizon
estimation (MHE) scheme for the combined demand and state
estimation for a two region large-scale urban road network with
dynamics described via macroscopic fundamental diagram.
We consider various measurement configurations likely to be
encountered in practice, such as measurements on regional
accumulations and transfer flows without OD information, and
provide results of their observability tests. A model predictive
perimeter control scheme is combined with the MHE to present
an application case. Simulation studies demonstrate operation
of the proposed scheme.

I. INTRODUCTION

Modeling, estimation, and control of large-scale urban
road networks present considerable challenges. Inadequate
infrastructure and coordination, low sensor coverage, spa-
tiotemporal propagation of congestion, and the uncertainty
in traveler choices contribute to the difficulties faced when
creating realistic models and designing effective estimation
and control schemes for urban networks. Although consider-
able research has focused on real-time traffic control in the
last decades, estimation and control of heterogeneously con-
gested large-scale networks remains a challenging problem.

Studies on traffic modeling and control for urban networks
usually focus on microscopic models keeping track of link-
level traffic dynamics with control strategies using local
information. Based on the linear-quadratic regulator (LQR)
problem, traffic-responsive urban control (TUC) [1] and its
extensions (see [2], [3]) represent a multivariable feedback
regulator approach for network-wide urban traffic control.
Although TUC can deal with oversaturated conditions via
minimizing and balancing the relative occupancies of net-
work links, it may not be optimal for heterogeneous networks
with multiple pockets of congestion. Inspired by the max
pressure routing scheme for wireless networks, many local
traffic control schemes have been proposed for networks
of signalized intersections (see [4], [5], [6], [7]), which
involve evaluations at each intersection requiring information
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exclusively from adjacent links. Although the high accuracy
of microscopic traffic models is desirable for simulation
purposes, the increased model complexity results in com-
plications for control, whereas local control strategies might
not be able to operate properly under heavily congested
conditions and fast propagation, as they do not protect
the congested regions upstream. Another disadvantage of
sophisticated local controllers is that they might require
detailed information on traffic states, which is difficult to
estimate or measure.

Literature on state estimation for road traffic focuses
mainly on freeway networks: A mixture Kalman filter based
on the cell transmission model is proposed in [8]. In [9], an
extended Kalman filter is designed for real-time state and
parameter estimation for a freeway network with dynamics
described by the METANET model [10]. A particle filtering
framework is proposed in [11] for a second order freeway
traffic model that is efficiently parallelizable. Superiority of
Lagrangian state estimation formulations over the Eulerian
case using extended Kalman filters for the Lighthill-Whitham
and Richards (LWR) model is reported in [12]. There is also
some literature on urban traffic state estimation: In [13] an
unscented Kalman filter is designed based on a kinematic
wave model modified for urban traffic. An approach integrat-
ing the Kalman filter with advanced data fusion techniques
is taken by [14] for urban network state estimation. A data
fusion based extended Kalman filter is proposed in [15] for
urban corridors based on the LWR model. Interestingly, even
though there is considerable literature on traffic state estima-
tion (especially for freeways), there are not many works on
comparable techniques for large-scale urban networks.

An alternative to local traffic control methods is the
hierarchical approach. At the upper layer, a network-level
controller optimizes network performance via regulating
macroscopic traffic flows through interregional actuation
systems (e.g., perimeter control), whereas at the lower layer
the local controllers regulate microscopic traffic movements
through intraregional actuation systems (e.g., signalized in-
tersections). The macroscopic fundamental diagram (MFD)
of urban traffic is a modeling tool for developing aggregated
dynamic models of urban networks, which are required for
the design of efficient network-level control schemes for
the upper layer. It is possible to model an urban region
with roughly homogeneous accumulation (i.e., small spatial
link density heterogeneity) with an MFD, which provides
a unimodal, low-scatter, and demand-insensitive relationship
between accumulation and trip completion flow (see [16]).

The concept of MFD with an optimal accumulation was
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first proposed in [17], and its existence was recently verified
with dynamic features and real data in [16]. Control strate-
gies based on MFD modeling using perimeter control type
actuation (i.e., manipulating transfer flows between neighbor-
ing regions) have been proposed by many researchers (see
[18], [19], [20], [21], [22], [23], [24], [25]). Application of
the MPC technique to the control of urban networks with
MFD modeling also attracted recent interest. As the first
work on this direction, in [26] a nonlinear MPC is designed
for a two-region network actuated with perimeter control.
The study in [27] suggests hybrid MPC schemes integrating
perimeter control and switching signal timing plans. A model
capturing the dynamics of heterogeneity is proposed in [28]
together with a hierarchical control scheme with MPC on
the upper level. An integration of perimeter control and
route guidance type actuation within an MPC framework
is developed in [29]. A more detailed literature review of
MFD-based modeling and control can be found in [30].

Most works on perimeter control assume that: a) Accu-
mulations nij(t) are known (i.e., measured perfectly), b)
future inflow demands qij(t) are available. Such assumptions
are problematic for practice due to following reasons: 1)
Measurements are corrupted by noise, 2) measuring nij(t) or
qij(t) is difficult as they require information on the origins
and destination of drivers, 3) assuming known future values
of qij(t) is unrealistic. We address the first two points in
this paper by a nonlinear moving horizon estimation (MHE)
scheme capable of combined demand and state estimation.

II. MODELING

Consider a heterogeneous urban road network that can
be partitioned into 2 homogeneous regions. Each region i,
i ∈ {1, 2}, has a well-defined outflow MFD, defined via
Gi(ni(t)) (veh/s), which is the outflow (i.e., trip completion
flow) at accumulation ni(t). The flow of vehicles appearing
in region i and demanding trips to destination j (i.e., origin-
destination (OD) inflow demand) is qij(t) (veh/s), whereas
nij(t) (veh) is the accumulation in region i with destination
j, while ni(t) (veh) is the regional accumulation at time t;
ni(t) =

∑2
j=1 nij(t). Between the two regions there exists

perimeter control actuators, modeled via the control inputs
u12(t) and u21(t) ∈ [0, 1], that can manipulate the transfer
flows. Dynamics of a 2-region MFDs network is [26]:

ṅ11(t) = q11(t) +M21(t)−M11(t) (1a)
ṅ12(t) = q12(t)−M12(t) (1b)
ṅ21(t) = q21(t)−M21(t) (1c)
ṅ22(t) = q22(t) +M12(t)−M22(t), (1d)

while Mii(t) and Mij(t) express the exit (i.e., vehicles
disappearing from the network) and transfer flows (i.e.,
vehicles transferring between regions), respectively:

Mii(t) =
nii(t)

ni(t)
Gi(ni(t)) ∀i ∈ {1, 2} (2a)

Mij(t) = uij(t)
nij(t)

ni(t)
Gi(ni(t)) ∀i ∈ {1, 2}, j 6= i.

(2b)

All trips inside a region are assumed to have similar trip
lengths (i.e., the origin and destination of the trip does not
affect the distance traveled by a vehicle). Simulation and em-
pirical results [16] suggest the possibility of approximating
the MFD by an asymmetric unimodal curve skewed to the
right (i.e., the critical accumulation ncr

i , for which Gi(ni(t))
is at maximum, is less than half of the jam accumulation
njam
i that puts the region in gridlock). Thus, Gi(ni(t)) can

be expressed using a third degree polynomial in ni(t):

Gi(ni(t)) = ain
3
i (t) + bin

2
i (t) + cini(t), (3)

where ai, bi, and ci are known parameters (which are to be
estimated from historical data in practice).

III. OPTIMAL ESTIMATION AND CONTROL

A. Modeling for Demand Estimation

For purposes of OD inflow demand estimation, we model
the inflow demands qij(t) as parameters that are unknown
but constant in time, augmenting the state with the demand
terms, yielding the augmented dynamical system:[

ẋn(t)
ẋq(t)

]
=

[
fn(xn(t), xq(t), u(t))

0

]
, (4)

where xn(t) contains the accumulations nij(t)

xn(t) = [n11(t) n12(t) n21(t) n22(t)]T, (5)

xq(t) contains the inflow demands qij(t)

xq(t) = [q11(t) q12(t) q21(t) q22(t)]T, (6)

u(t) contains the control inputs

u(t) = [u12(t) u21(t)]T, (7)

whereas fn(·) is the dynamics given in eq. (1), while 0 is
a vector of zeros (expressing that the inflow demand terms
are assumed to be constant in time, i.e., q̇ij(t) = 0).

Assuming access to measurement y(t) corrupted by noise
v(t), we can write the dynamics and measurement as:

ẋ(t) = f(x(t), u(t)) + w(t) (8)
y(t) = h(x(t), u(t)) + v(t) (9)

where x(t) is the augmented state

x(t) = [xn(t) xq(t)]T, (10)

f(·) is the augmented dynamical system given in eq. (4), h(·)
is the measurement equation, while w(t) contains unknown
disturbances used to account for plant-model mismatch:

w(t) = [wn(t) wq(t)]T

wn(t) = [wn11
(t) wn12

(t) wn21
(t) wn22

(t)]T

wq(t) = [wq11(t) wq12(t) wq21(t) wq22(t)]T,

(11)

where wnij
(t) ∼ N (0, σ2

wn
) and wqij (t) ∼ N (0, σ2

wq
) are

white Gaussian noise terms modeling disturbances in the
accumulation dynamics and unknown variations of inflow
demands, respectively.



B. Measurement Configurations

Measurements available in an application dictate which
state variables can be included in the dynamical model
used in the design of estimation and control schemes. In
this section we present some measurement configurations
likely to be encountered in large-scale urban road network
management. The important question of whether the traffic
state can be determined from available measurements (i.e.,
observability) will be tackled in the next section.

1) Measurements on Accumulations nij(t): One straight-
forward measurement configuration involves simply measur-
ing all accumulations nij(t):

yA(t) = hA(x(t)) + vA(t) (12)
hA(x(t)) = xn(t), (13)

where vA(t) is the vector of measurement noise terms
associated with measurements of nij(t):

vA(t) = [vn11
(t) vn12

(t) vn21
(t) vn22

(t)]T, (14)

where vnij
(t) ∼ N (0, σ2

v,nij
) is white Gaussian noise

modeling sensor noise in the measurement of nij(t). Know-
ing nij(t) in real-time requires having drivers report their
destination in the beginning of the trip, which is currently
not straightforward to achieve.

2) Measurement on Regional Accumulations ni(t) and
Transfer Flows Mij(t): As regional accumulations ni(t)
and transfer flows Mij(t) can be easily measured with loop
detectors (dispersed inside a region for ni(t) and placed at
the boundary between regions for Mij(t)), a more practical
configuration involves measuring Mij(t) and ni(t):

yB(t) = hB(x(t), u(t)) + vB(t)

hB(x(t), u(t)) =


n1(t)
n2(t)
M12(t)
M21(t)

 vB(t) =


vn1(t)
vn2(t)
vM12

(t)
vM21

(t)

 , (15)

where vni
(t) ∼ N (0, σ2

v,ni
) and v,Mij(t) ∼ N (0, σ2

vMij
)

are white Gaussian noise terms modeling sensor noise in the
measurement of ni(t) and Mij(t), respectively.

3) Measurements on Inflow Demands qij(t): In some
well-instrumented applications it might be possible to mea-
sure all qij(t) terms (or know them based on historical data
with some uncertainty):

yC(t) = hC(x(t)) + vC(t) (16)
hC(x(t)) = xq(t), (17)

where vC(t) is the vector of measurement noise terms
associated with measurements of qij(t):

vC(t) = [vq11(t) vq12(t) vq21(t) vq22(t)]T, (18)

where vqij (t) ∼ N (0, σ2
v,qij ) is white Gaussian noise mod-

eling sensor noise in the measurement of qij(t).

4) Measurements on Regional Inflow Demands qi(t):
Some applications might involve access to measurements
on qi(t) instead of qij(t) (e.g., when GPS information is
collected for a sample of vehicles):

yD(t) = hD(x(t)) + vD(t)

hD(x(t)) =

[
q11(t) + q12(t)
q21(t) + q22(t)

]
vD(t) =

[
vq1(t)
vq2(t)

]
,

(19)

where vqi(t) ∼ N (0, σ2
v,qi) is white Gaussian noise model-

ing sensor noise in the measurement of qi(t).

C. Measurement Compositions and Observability Test
Availability of measurements affects observability of a

dynamical system. Roughly stated, observability is about
whether the state can be uniquely determined based on
the measurements or not. A dynamical system (i.e., f(·)
and h(·)) has to be observable in order to do estimation.
Observability of nonlinear systems can be checked using the
observability rank condition developed in [31]. For affine-
input systems (such as eq. (4)), which can be written in the
following form:

ẋ(t) = f(x) +

m∑
j=1

gj(x(t))uj(t) (20)

yi(t) = hi(x(t)), i = 1, . . . , p, (21)

where x ∈ Rl is the state, uj ∈ R (with j = 1, . . . ,m)
are control inputs, and yi ∈ R (with i = 1, . . . , p) are
the measurements, it is possible to use a simpler form of
the rank condition, as included in the software package
developed in [32] or presented in an algorithm given in [33].
This observability test involves constructing the observability
codistribution [32]:

ΩO = 〈f, g1, . . . , gm | span{dh1, . . . , dhp}〉, (22)

and checking its rank. If the rank of ΩO is equal to l
(i.e., dimension of the state x), then the observability rank
condition is satisfied [32], [33], indicating that the system is
locally weakly observable (see §3 in [31] for details).

To check observability for our case, we conducted tests for
the four measurement compositions based on combinations
of the configurations given earlier:

h1 =

[
hA
hC

]
h2 =

[
hA
hD

]
h3 =

[
hB
hC

]
h4 =

[
hB
hD

]
. (23)

Observability tests are done using the ProPac package [32] of
the computer algebra tool Mathematica, where observability
rank condition is checked for the dynamics eq. (4) and each
measurement composition. In all four cases the system is
locally weakly observable (see §3 in [31] for details).

Since measurement configurations involving limited or
no OD-based information (i.e., h2, h3, and h4) still yield
observability, it is possible to design state estimators to
reconstruct nij(t) and qij(t) from measurements, enabling
development of traffic control schemes (combined with a
state estimator) involving feedback on nij(t) and qij(t) even
if these cannot be measured. This has important implications,
as in practice nij(t) and qij(t) are difficult to measure.



D. Moving Horizon Estimation

We formulate the problem of finding state estimate trajec-
tories for a moving time horizon extending a fixed length
into the past, striking a trade-off between measurements and
the prediction model, as the following MHE problem:

minimize
x,w

Ne−1∑
k=0

‖wk‖2Q +

Ne∑
k=0

‖vk‖2R

subject to for k = 0, . . . , Ne :

vk = y(t−Ne + k)− h(xk, uk)

for k = 0, . . . , Ne − 1 :

xk+1 = F (xk, u(t−Ne + k), wk, T )

for k = 1, . . . , Ne :

a) 0 ≤ nij,k ∀i, j ∈ {1, 2}
b) ni,k ≤ njam

i ∀i ∈ {1, 2}
c) 0 ≤ qij,k ≤ q̄ij ∀i, j ∈ {1, 2}

(24)

where k is the time interval counter internal to the MHE, Ne
is the horizon of the MHE, t is the current time step, Q and R
are weighting matrices on the disturbance and measurement
noise, respectively, wk, vk, xk, and uk are the disturbance,
measurement noise, state, and control input vectors, for the
time interval k, respectively, h is the measurement equation,
F is the discrete-time version of the dynamics given in
eq. (8) with sampling time T , whereas y(t) and u(t) are
measurement and control input vectors recorded at time
step t, respectively, while nij,k, ni,k, and qij,k are the
accumulation, regional accumulation, and inflow demand
state variables internal to the MHE, respectively, with the
constraints expressing their physical or known limits: a)
accumulations are non-negative, b) regional accumulations
cannot exceed jam accumulation, c) inflow demands are non-
negative and cannot exceed some known upper bound q̄ij .

E. Model Predictive Control

We formulate the problem of finding the control inputs
that minimize total time spent (TTS) for a finite horizon as
the following MPC problem:

minimize
uk

T ·
Nc∑
k=0

2∑
i=1

2∑
j=1

nij,k

subject to x0 = x̂(t)

for k = 0, . . . , Nc − 1 :

xk+1 = F (xk, uk, 0, T )

umin ≤ uk ≤ umax

|u0 − u(t− 1)| ≤ ∆u

for k = 1, . . . , Nc :

0 ≤ nij,k ∀i ∈ {1, 2}
ni,k ≤ ni,jam ∀i ∈ {1, 2},

(25)

where k is the time interval counter internal to the MPC, Nc
is the horizon of the MPC (i.e., the prediction horizon), x̂(t)
is the available information (either measured or estimated)

on the state x(t) at time t (with t being the current time
step), xk and uk are state and control input vectors internal
to the MPC, respectively, F is the discrete-time version of
the dynamics given in eq. (1) with sampling time T (with
unknown disturbances wk assumed to be 0), ∆u is the rate
limiting parameter on control inputs, whereas ni,k is the
regional accumulation state variable internal to the MPC.
Notice that this MPC scheme requires no information on
future values of qij(t), according to the prediction model
the inflow demand terms are assumed to be fixed to their
measured (or estimated) value contained in x̂(t) for the
duration of the prediction horizon. Although this is not
fully realistic, it is more practically reasonable compared
to previously proposed model predictive perimeter control
schemes assuming future qij(t) values to be known.

The optimization problems given in eq. (24) and eq. (25)
are nonconvex nonlinear programs, which can be solved
efficiently via, e.g., sequential quadratic programming or
interior point solvers (for details, see [34]).

IV. SIMULATION RESULTS

A. Congested Scenario

In the congested scenario the network is uncongested at
the beginning and faces increased inflow demands as time
progresses. All simulations are conducted on a 2-region
urban network with the simulation model given in eq. (8)
for representing the reality. The regions have the same MFD,
with the parameters ai = 4.133 · 10−11, bi = −8.282 · 10−7,
ci = 0.0042, jam accumulation ni,jam = 104 (veh), critical
accumulation ni,cr = 3.4 · 103 (veh), maximum outflow
G(ni,cr) = 6.3 (veh/s), for i = {1, 2}, which are consistent
with the MFD observed in downtown Yokohama (see [16]).

The MHE and MPC schemes are built using direct
multiple shooting [35], with dynamics discretized via
Runge–Kutta method with a timestep of T = 90 s. The
implementation is done using MPCTools [36] (an interface
to CasADi [37]) with IPOPT [38] as solver. Horizons are
Ne = Nc = 20, following the tuning results of a study with
the same network setup [26]. Control inputs are bounded as
0.1 ≤ uij(t) ≤ 0.9, with a rate limit of ∆u = 0.1. Simulation
length corresponds to 3.5 hours of real time.

Standard deviations of the process and measurement noise
are chosen as σwn

= 0.5 veh/s, σv,nij
= 1000 veh, σv,qij =

0.5 veh/s, σv,ni
= 1000 veh, σv,Mij

= 1 veh/s, σv,qi = 0.5
veh/s, specifying severe noise and disturbance conditions.
Weighting matrices of the MHE (i.e., Q and R) contain the
inverses of these values, to reflect the fact that the stage cost
terms related to the process and measurement noises should
be weighted inversely proportional to the associated amount
of uncertainty (that is, e.g., the measurements should be
trusted more if the measurement noise has a lower variance).

Control performance is evaluated using TTS (veh.s), de-
fined for a single simulation experiment as:

TTS = T ·
tfinal∑
t=1

2∑
i=1

2∑
j=1

nij(t), (26)



while for estimation performance we define two metrics
based on the root-mean-square estimation error, one for
nij(t) and the other for qij(t):

RMSEn =
1

4

2∑
i=1

2∑
j=1

√∑tfinal
t=1(nij(t)− n̂ij(t))2

tfinal
(27)

RMSEq =
1

4

2∑
i=1

2∑
j=1

√∑tfinal
t=1(qij(t)− q̂ij(t))2

tfinal
(28)

where n̂ij(t) and q̂ij(t) are the estimates computed by the
MHE at time t, for nij(t) and qij(t), respectively.

A summary of the results is given in table I, which shows
the TTS, RMSEn, and RMSEq values alongside the mean
and maximum CPU times taken by the combined MHE-MPC
scheme at a time step, for a no control case (with uij(t)
fixed to 0.9) and the four combined MHE-MPC schemes
each with a different measurement composition as given
in eq. (23). The results indicate that the proposed scheme,
with all four compositions, is able to perform well even
in the face of severe measurement noise. It is important
to note here that a fair quantitative comparison between
the four measurement compositions is impossible simply
because they involve different measurements, the noise levels
of which are not comparable. Furthermore, fig. 1 shows true,
measured, and estimated values of accumulation n12(t) and
inflow demand q12(t), for the MHE-MPC schemes with the
four different measurement compositions. As expected, the
cases with limited measurements on the inflows (i.e., h2 and
h4) experience degraded estimation performance especially
for qij(t), while the most limited measurement case (i.e., h4)
has the most severe degradation.

B. Sensitivity to Measurement Noise Intensity

The effect of changing noise intensity on estimation per-
formance is examined by a sensitivity analysis, where a set
of 50 randomly generated scenarios is tested varying only
the standard deviations of measurement noise: σvnij

from
100 veh to 1000 veh for the h1 and h2 cases; σvni

from 100
veh to 1000 veh and σvMij

from 0.1 veh/s to 1 veh/s (σvni

and σvMij
changed together) for the h3 and h4 cases.

The results are shown in fig. 2, depicting RMSEn as
a function of the measurement noise standard deviations.
As expected, the results suggest degradation in estimation
performance with increasing noise level. However, it can be
observed that MHE fairly insensitive to changes in noise
levels.

TABLE I
PERFORMANCE EVALUATION FOR CONGESTED SCENARIO

meas.
comp.

TTS
(×107

veh·s)

RMSEn

(veh)
RMSEq

(veh/s)

mean/max
CPU time

of MHE+MPC (s)
no control 6.56 - - -

h1 4.55 163.6 0.08 0.76/0.98
h2 4.54 270.5 0.90 0.75/1.00
h3 4.40 126.1 0.08 0.74/0.96
h4 4.42 215.4 0.82 0.74/1.01
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Fig. 1. Congested scenario results of the MHE-MPC scheme with the four
measurement compositions, showing the true (blue), measured (red), and
estimated (yellow) values of n12(t) ((a)-(c)-(e)-(g)) and q12(t) ((b)-(d)-(f)-
(h)): (a)-(b) h1, (c)-(d) h2, (e)-(f) h3, (g)-(h) h4.

V. CONCLUSION

In this paper we proposed a nonlinear MHE scheme capa-
ble of OD inflow demand and accumulation state estimation
for a two-region large-scale urban network model with MFD-
based dynamics, together with four practically motivated
measurement compositions. Observability tests revealed that
observability is retained for compositions with limited or no
measurements on OD-based information. This has practical
significance, since OD-based measurements are usually not
available or difficult to obtain in real-time. Future work could
include more detailed sensitivity analyses and comparisons
with traditional methods such as the extended Kalman filter.
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