
Mixed Logical Dynamical Modeling and Hybrid Model

Predictive Control of Public Transport Operations

Isik Ilber Sirmatel, Nikolas Geroliminis

Urban Transport Systems Laboratory (LUTS)
School of Architecture, Civil and Environmental Engineering
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Abstract

Bus transport systems cannot retain scheduled headways without feed-

back control due to their unstable nature, leading to irregularities such as

bus bunching, and ultimately to increased service times and decreased bus

service quality. Traditional anti-bunching methods considering only regular-

ization of spacings might unnecessarily slow down buses en route. In this

work a detailed but computationally lightweight dynamical model of a sin-

gle line bus transport system involving both continuous and binary states is

developed. Furthermore a hybrid model predictive control (MPC) scheme is

proposed, with a dual objective of regularizing spacings and improving speed

of bus service operations. Performance of the predictive controller is com-

pared with I- and PI-controllers via extensive simulations using the proposed

model. Results indicate the potential of the hybrid MPC in avoiding bus

bunching and decreasing passenger delays inside and outside the buses.
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1. Introduction

It is well known in the public transport systems literature that bus sys-

tems cannot maintain schedule without control (Newell and Potts, 1964).

Buses that lag behind encounter more passengers waiting for them, leading

to them lagging more, and buses that are slightly fast encounter less passen-

gers. This positive feedback loop leads to the well-known phenomenon of bus

bunching. Instabilities in the bus transport system (BTS) operation, result-

ing from spatiotemporal variability of both traffic congestion and stop-to-stop

passenger demands, and manifesting themselves as headway irregularity and

ultimately as bus bunching, lead to inefficient operations, increased service

times, and degradation of service quality. Due to these reasons, research on

modeling and control of BTSs is of high importance.

Modeling efforts to represent bus dynamics in congested routes have been

investigated by various papers. The reader could refer to Hans et al. (2015a)

for a review. The authors describe models of two main categories (deter-

ministic and stochastic) and investigate how well they can reproduce service

irregularities. Influences of overtaking and common lines on the performance

of bus operations are examined in Schmöcker et al. (2016), whereas Wu et al.

(2017) study the effects of dynamic passenger queue swapping considering

bus bunching and capacity constraints. Recently, an interesting work (see

Hans et al. (2015b)) develops a stochastic and event based bus operation

model that provides predictions of bus trajectories based on the observation

of current bus positions using particle filters. While the estimates are quite

accurate, such a framework might be difficult to be integrated in a real-time

control framework, due to the potentially prohibitive computational burden
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associated with such models.

An interesting feature of BTSs is the presence of hybrid dynamical phe-

nomena, suggesting the necessity of modeling them as hybrid systems, where

evolution of the dynamics depend on the interaction of continuous and dis-

crete variables (Van Der Schaft and Schumacher, 2000). Buses can be cruis-

ing (i.e., can have nonzero speed) only if they are not stopping at a stop,

whereas passengers can transfer between a stop and a bus only if the bus is

stopping at that stop. As a consequence, two kinds of information are needed

to describe BTS dynamics: Continuous variables (e.g., bus positions or pas-

senger accumulations) and binary variables (e.g., the condition whether a

bus is currently cruising to a stop). Evolution of continuous variables are

subject to linear dynamics since bus motion and passenger accumulation

dynamics can be formulated using linear models, whereas binary variables

evolve according to a finite state machine (e.g., the condition whether a bus

is currently cruising to a stop becomes false as the condition whether the

bus is currently stopping at that stop becomes true when the bus reaches

the stop). Such hybrid systems can be modeled as mixed logical dynamical

(MLD) systems, which are hybrid systems with dynamics evolving according

to linear difference equations subject to inequality constraints involving con-

tinuous and discrete variables. Proposed by Bemporad and Morari (1999),

the MLD modeling framework is a systematic approach to the mathemati-

cal modeling of dynamical systems which involve the interaction of physical

laws, logic rules, and constraints. Dynamics of a BTS feature interactions

of continuous (e.g., bus positions and passenger accumulations) and binary

states (e.g., is bus 1 stopping at stop 2?), involving both physical laws (e.g.,
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buses moving or passengers flowing) and logic statements (e.g., passengers

may transfer between bus 1 and stop 2 only if bus 1 is stopping at stop 2).

Approaching the BTS modeling problem from a hybrid systems point of view

is thus necessary for building detailed dynamical models of bus operations for

analysis and control purposes, whereas the MLD modeling is preferable as it

enables development of hybrid dynamical models with beneficial properties

for reasons of computational efficiency.

Considerable research has been directed, especially in the last 4 decades,

to developing real-time bus control methods for avoiding bus bunching and

ensuring efficient and reliable operation of BTSs (see Ibarra-Rojas et al.

(2015) and Sánchez-Mart́ınez et al. (2016) for detailed reviews, and Berrebi

et al. (2017) for an extensive review focusing on holding methods).

Most of the literature on bus operations via real-time control focus on

station control methods, which involve taking decisions at a subset of stops

of the bus line. Some methods of this class focus on regularizing headways via

holding, with the assumption that this would lead to efficient operation and

decreased travel times (Abkowitz and Lepofsky, 1990; Daganzo, 2009; Xuan

et al., 2011; Andres and Nair, 2017). In situations where there is high vari-

ability in the demands, passenger waiting times need to be taken into account

in the holding problem formulation alongside headways (Ibarra-Rojas et al.,

2015). A recent study by Berrebi et al. (2015) considers stochasticity in bus

arrival times and derives an optimal holding policy for minimizing headway

irregularity by assuming that the distribution of bus arrivals is known and

not influenced by decisions further upstream. Holding can also be used to

improve timing of passenger transfers (Hall et al., 2001; Delgado et al., 2013).
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Another subclass of station control methods is the stop-skipping strategies,

where the control decisions are realized by forcing buses to skip some stops,

to increase speed and thus efficiency (Fu et al., 2003). Although station con-

trol strategies can be effective in regularizing headways in moderate demand

situations, for high demands they have adverse affects on BTS performance

as they actuate via holding the bus at a stop or making the bus skip a stop.

Under some circumstances they can make buses significantly slower, which

will influence the quality of in-vehicle service, but also increase the operating

cost and required fleet size. Another disadvantage of station control methods

is that decisions can be taken only at stops, resulting in a significant time

lag between observations and control actions. This can play a vital role if

the system experiences various uncertainties both in time and space, which is

the case en route (congestion heterogeneity) and at stops (passenger demand

heterogeneity).

Another class of real-time bus control methods is the inter-station control,

where decisions are taken while the bus is moving between stops. Traffic

signal priority methods belong to this category, where the aim is to manage

traffic flow efficiently via prioritizing certain circulations of an intersection

with actuation over traffic lights (Liu et al., 2003; Van Oort et al., 2012;

Chow et al., 2017). Although consistent with the standard framework where

control inputs belong to the n-dimensional real space Rn that is prevalent in

the control systems literature, bus speed control methods (another member

of the inter-station control class) received relatively little attention compared

to holding methods in the public transport literature. Signal priority is not

studied in this work.
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The idea in bus speed control is to manipulate the speed of each bus

in real-time during its movement via feedback control mechanisms to avoid

bunching and increase BTS efficiency. On this direction, a control strategy

combining bus speed control and signal priority is developed in Chandrasekar

et al. (2002), where control actions are taken to ensure that the buses oper-

ate with spacings equal to a desired spacing, which is shown to be able to

regularize headways. A bus speed control method is proposed by Daganzo

and Pilachowski (2011), where the speed command for each bus is computed

according to its forward and backward spacings, which can enforce speed

bounds and prevent bus bunching. A more recent study by Ampountolas

and Kring (2015) develops a combined state estimation and linear quadratic

regulator scheme to achieve coordination between the buses, leading to head-

way regularity and improved service.

The following points are crucial for real-time control of bus operations:

(a) Constraints on speeds and passenger capacities of buses, (b) hybrid dy-

namical phenomena (e.g., a bus can either cruise or stop while passengers

can transfer only if a bus is stopping at the stop), (c) possibility of access

to demand and traffic information without perfect knowledge. Considering

these points, model predictive control (MPC) emerges as a control design

paradigm highly applicable to control of bus operations. Based on real-time

repeated optimization, MPC is an advanced control technique suited to opti-

mal control of constrained multivariable nonlinear systems (note that MPC is

also known as receding horizon control and rolling horizon planning/control).

Main features of MPC are discussed in Garcia et al. (1989), whereas Mayne

et al. (2000) provides an overview of theoretical aspects. A method to design
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MPC for hybrid systems (i.e., hybrid MPC) is proposed in Bemporad and

Morari (1999) together with the MLD modeling framework.

Using MPC methods for bus operations received increased attention in

the public transport literature during the recent years. In Eberlein et al.

(2001), the holding problem is formulated as a deterministic MPC scheme to

minimize passenger delays, using a model considering dwell time effects on

vehicle delays and headways. The problem of minimizing passenger delays

via stop-skipping is modeled using an integer programming formulation in

Sun and Hickman (2005). Delgado et al. (2009) develop a model considering

deterministic passenger demands at stops and travel times between stops,

which is used to design an MPC with linear constraints for holding and

boarding limits. A multi-objective hybrid MPC formulation is proposed in

Cortés et al. (2010) using a dynamical model considering bus position, loads,

and arrival times. The method considers holding and stop-skipping as control

inputs to minimize waiting times and adverse effects of the control actions.

Considering holding times and number of passengers prevented from boarding

as control inputs, Delgado et al. (2012) integrate dynamics of bus positions

and passenger accumulations in an MPC framework that involves minimizing

passenger delays and control action penalties. Sáez et al. (2012) propose a

hybrid MPC scheme with actuation via holding and stop-skipping using a

discrete-time event-based model with stochastic demands. Hernández et al.

(2015) improve the work in Delgado et al. (2009, 2012) by extending the

MPC-based holding strategy to the case of multiple bus lines. A hybrid

MPC design integrating holding, stop-skipping, and short-turning maneuvers

is proposed in Nesheli and Ceder (2015) for minimizing passenger delays
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in a two-way BTS. An MPC formulation based on dynamic running times

and demands is developed in Sánchez-Mart́ınez et al. (2016) that involves

minimizing passenger delays with holding times as decision variables.

MPC formulations in the bus control literature are based on either non-

convex nonlinear programs (NLPs) (Eberlein et al., 2001; Delgado et al.,

2009, 2012; Hernández et al., 2015; Sánchez-Mart́ınez et al., 2016) or inte-

ger/mixed integer NLPs (Sun and Hickman, 2005; Cortés et al., 2010; Sáez

et al., 2012; Nesheli and Ceder, 2015). Computing the global optimum for

non-convex NLPs is difficult and is known to be NP-hard (Murty and Kabadi,

1987), whereas it is extremely difficult for integer/mixed integer NLPs which

can even be undecidable (Jeroslow, 1973). Thus, with the formulations pro-

posed in the MPC-based holding literature, it is computationally prohibitive

to solve the resulting MPC problems to global optimality in real-time, po-

tentially harming the performance of the BTS controller. Furthermore, un-

der conditions of perfect information available to controller, actuation over

holding and bus speeds would lead to identical results. However, as un-

certainties arising from imperfect information (such as measurement errors

and plant/model mismatch) and fast-changing conditions (stochasticity in

demands and traffic congestion) are inevitable in practice, it becomes neces-

sary to compensate for them using feedback control. Holding control deci-

sions can be taken only when the bus is stopping at the stop, whereas bus

speed control decisions can be applied at every instant of time (except when

the bus is stopping at the stop), resulting in the possibility of taking more

frequent decisions that are roughly continuous in time with bus speed con-

trol methods. Nevertheless, while succeeding in regularizing spacings, the
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bus speed control methods proposed in the aforementioned studies use for-

mulations that are based only on spacings, which might slow down buses

significantly when there are strong variations in the spatial heterogeneity of

route congestion.

Building upon earlier conference work in Sirmatel and Geroliminis (2017),

this paper extends the bus operations literature in modeling and control as-

pects: (a) For the modeling part, a novel MLD BTS model is proposed that

considers the interaction between bus position and passenger accumulation

dynamics. The model is detailed enough to allow in-depth simulation-based

analysis of BTSs, but at the same time computationally lightweight to allow

for fast execution. (b) In the control aspect, considering a simplified MLD

model with actuation via bus speeds, a hybrid MPC scheme is designed based

on a mixed integer quadratic programming (MIQP) formulation to regular-

ize bus spacings and obtain fast BTS operation. The method addresses the

slowing-down problem of spacings-based bus speed control literature by in-

tegrating bus speed maximization in the problem formulation. Moreover,

the proposed MIQP formulation yields convex quadratic programming (QP)

subproblems (by construction due to the MLD modeling approach) when the

integrality constraints are dropped. Such MIQPs, although still non-convex

and NP-hard, can be solved much more efficiently compared to the more gen-

eral integer/mixed integer NLPs with non-convex subproblems, since there

exist powerful algorithms for solving the convex QP subproblems (Bonami

et al., 2012). In contrast to the works on MPC-based bus control in the liter-

ature, the aforementioned feature of the proposed approach enables solutions

of the hybrid MPC problems to global optimality while retaining real-time
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tractability. Furthermore, to the best of the authors’ knowledge, this work

represents the first attempt on using the MLD modeling approach for BTS

modeling and control.

The remainder of the paper is organized as follows: Section 2 intro-

duces the dynamical BTS model based on the MLD modeling framework,

intended for use in simulation-based testing of bus operation policies or con-

trol schemes. In section 3 a novel hybrid MPC scheme is developed, which is

based on a constrained optimal control formulation with the dual objective of

spacing regularization and fast BTS operation through coordination of buses

by manipulating their speeds in real time. Section 4 contains extensive sim-

ulation studies, using the simulation model developed in 2 for representing

BTS reality, which showcase the performance of the proposed hybrid MPC

scheme. Finally, section 5 provides conclusions and potential directions for

future work.

2. Modeling and Simulation of Bus Transport Systems

Using the MLD modeling approach, in this section we develop a novel

dynamical BTS model considering the interaction between the dynamics of

bus motion and passenger accumulation via formulations integrating physical

laws and logic rules. Able to capture detailed dynamical properties of bus

operations while also being computationally lightweight, the proposed model

can be used for extensive simulation-based analysis of BTS management

schemes. In this paper this model is used as the simulation model (i.e., the

plant) representing the reality of BTS operations for testing the proposed

hybrid MPC method, while a simplified version of it will be given as the
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prediction model of the hybrid MPC scheme later in section 3.

To highlight clearly the contrast between the simulation and prediction

models, here we note their important differences: 1) The simulation model

has a bus accumulation state representing the number of passengers on a bus

with a specific destination stop, while for the bus accumulation state of the

prediction model the full destination information is not covered. Instead,

the prediction model has two bus accumulation states, one representing the

total number of passengers on a bus, whereas the other expresses the part

of this total that will alight at the upcoming stop (with some uncertainty).

Thus, unlike the prediction model, the simulation model has full information

regarding all the destinations of the passengers on a bus. 2) For stops, the

simulation model has a stop accumulation state representing the number of

passengers at a stop with a specific destination stop, whereas the prediction

model has a different stop accumulation state representing only the total

number of passengers waiting at a stop without any destination information.

Thus, similarly to 1), the simulation model has full information regarding the

destinations of all passengers waiting at a stop, whereas the prediction model

does not have any information at all regarding their destinations. Hence, the

prediction model specifies a simplification over the simulation model given in

this section, which is critical for the following reasons: a) The simplification

enables computational tractability of the resulting hybrid MPC problems,

which is important as the proposed hybrid MPC scheme is intended for real-

time bus control. b) It might be difficult to estimate/measure the detailed

accumulation states of the simulation model, as they require knowing the

destinations of all passengers, complicating usage for control purposes. The
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prediction model, on the other hand, requires estimation of only the total bus

accumulation (which can be easily measured using e.g. optical sensors) and

the part alighting at the upcoming stop, which can be extracted (possibly

with some errors) from historical data using tap on/tap off systems, whereas

the total stop accumulation could be measured with cameras. Thus, owing to

its computational benefits and relative ease of the required instrumentation,

the prediction model (given later in section 3) specifies a dynamical model

suited to real-time control, whereas the simulation model described in this

section represents highly detailed BTS dynamics appropriate for in-depth

simulation-based analysis of bus operations.

2.1. Bus Line as a Mixed Logical Dynamical System

We consider a single line BTS with Kb buses and Ks stops, and assume

that: (i) buses operate on the line with always positive speed (i.e., they never

change direction), (ii) a bus always stops at a stop if there are passengers

onboard that want to alight at that stop, (iii) passengers do not differentiate

between buses when boarding, since any bus they board will stop at their

destination stop, (iv) the position of the first stop of the line is assumed to be

0 and the bus positions are reset to 0 when they complete the line and reach

the first stop. Furthermore, to facilitate formulation of hybrid dynamics, the

dynamical modeling is based on a discrete-time framework, where the system

states are updated at each discrete-time step and are thus piecewise constant

functions of time.
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2.1.1. Dynamics of Continuous States

(a) Dynamics of bus position can be expressed as follows

xi(t+ 1) =
Ks∑
j=1

γi,j(t) (xi(t) + Tvi(t)) +
Ks∑
j=2

δi,j(t)xi(t), (1)

for i = 1, . . . , Kb, where t (–) is the time step counter, T (s) is the sampling

time, xi(t) ∈ R (m) and vi(t) ∈ R (m/s) are the position (i.e., distance from

the first stop) and the speed of bus i, respectively, γi,j(t) ∈ B is a binary state

expressing whether bus i is cruising to stop j or not, whereas δi,j(t) ∈ B is a

binary state expressing whether bus i is stopping at stop j or not (dynamics

of γi,j(t) and δi,j(t) are given later). The term
∑Ks

j=1 γi,j(t) is equal to 1 if bus

i is cruising, thus its position will increase. If it is stopping at a stop other

than stop 1 (i.e., if
∑Ks

j=2 δi,j(t) is equal to 1) its position will stay constant.

If it is stopping at stop 1 (i.e., if δi,1(t) = 1) this means that it has completed

the line and its position will be reset to 0.

(b) Dynamics of bus accumulation can be written as follows

ni,j(t+ 1) = ni,j(t) + T ·

(
Ks∑

h=1,h6=j

qin
i,h,j(t)− qout

i,j (t)

)
, (2)

for i = 1, . . . , Kb and j = 1, . . . , Ks, where ni,j(t) ∈ R (person) is the contin-

uous accumulation of passengers traveling in bus i with destination stop j,

qin
i,h,j(t) ∈ R (person/s) is the passenger flow with destination stop j boarding

bus i at stop h, whereas qout
i,j (t) ∈ R (person/s) is the passenger flow alighting

from bus i at stop j. Note that we model passenger accumulations and flows

as continuous variables instead of integers for simplicity and computational

tractability. A bus passenger capacity constraint will be introduced later.
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(c) Accumulation at a stop evolves according to the following equation

mh,j(t+ 1) = mh,j(t) + T ·

(
βh,j(t)−

Kb∑
i=1

qin
i,h,j(t)

)
, (3)

for h, j = 1, . . . , Ks, h 6= j, where mh,j(t) ∈ R (person) is the continuous

accumulation of passengers waiting at stop h with destination stop j, whereas

βh,j(t) ∈ R (person/s) is the passenger flow arriving at stop h with destination

stop j (i.e., the time varying origin-destination passenger flow demand from

stop h to stop j). With each time step the accumulation at stop h will

increase with Tβh,j(t), whereas if there are buses stopping at stop h (i.e., if∑Kb

i=1 q
in
i,h,j(t) is nonzero) it will decrease as passengers board the buses.

2.1.2. Constraints Defining Binary Events

(a) The event exi,j(t) expresses whether bus i has reached stop j (exi,j(t) =

1) or not exi,j(t) = 0, and is defined as

exi,j(t) =

1 if Dj ≤ xi(t)

0 otherwise,

(4)

for i = 1, . . . , Kb, j = 1, . . . , Ks, where Dj ∈ R (m) is the distance of stop j

from stop 1 (with D1 specially defined as the length of the whole line).

(b) The event emh (t), storing information on whether there are passengers

waiting at stop h (emh (t) = 0) or not (emh (t) = 1), is defined as

emh (t) =

0 if 0 <
∑Ks

j=1mh,j(t)

1 otherwise

for h = 1, . . . , Ks. (5)

(c) The event eci(t) stores the information on whether bus i is full of
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passengers (eci(t) = 1) or not (eci(t) = 0), and is defined as follows:

eci(t) =

0 if
∑Ks

j=1 ni,j(t) < ni,max

1 otherwise

for i = 1, . . . , Kb, (6)

where ni,max ∈ R (person) is the passenger capacity of bus i.

(d) The event eni,j(t) expresses whether there are passengers on bus i that

want to alight at stop j (eni,j(t) = 0) or not (eni,j(t) = 1) and is defined as

eni,j(t) =

0 if 0 < ni,j(t)

1 otherwise,

(7)

for i = 1, . . . , Kb, j = 1, . . . , Ks.

2.1.3. Dynamics of Binary States

(a) Dynamics of the logical condition expressing whether a bus is cruising

to a stop or not can be formulated as follows:

γi,j(t+ 1) = ζi,j(t) ∨ ηi,j(t), (8)

for i = 1, . . . , Kb, j = 1, . . . , Ks, where γi,j(t) ∈ B is the cruising state describ-

ing whether bus i is cruising towards stop j (γi,j(t) = 1) or not (γi,j(t) = 0),

ζi,j(t) ∈ B is the logical condition stating whether bus i begins cruising to

stop j (ζi,j(t) = 1) or not (ζi,j(t) = 0), whereas ηi,j(t) ∈ B is the logical

condition stating whether bus i continues cruising to stop j (ηi,j(t) = 1) or

not (ηi,j(t) = 0). The begin cruising condition ζi,j(t) is defined with a set of

events as:

ζi,j(t) , δi,j−1(t) ∧
((
emj−1(t) ∨ eci(t)

)
∧ eni,j−1(t)

)
, (9)
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which can be physically described as follows: Bus i begins cruising to stop j

if it is stopping at stop j−1 (i.e., if δi,j−1(t) = 1), and there are no passengers

wanting to alight at stop j − 1 (i.e., if eni,j−1(t) = 1), and either there are no

passengers at stop j− 1 wanting to board (i.e., if emj−1(t) = 1) or the bus has

no more vacant places (i.e., if eci(t) = 1). Furthermore, the continue cruising

condition ηi,j(t) is defined with a set of events as:

ηi,j(t) , γi,j(t) ∧ ¬exi,j(t), (10)

which can be physically described as follows: Bus i continues cruising to stop

j if it is cruising (i.e., if γi,j(t) = 1) and it has not yet reached stop j (i.e.,

if exi,j(t) = 0). Thus, equation (8) states that bus i begins cruising to stop j

if the conditions for it to begin cruising are satisfied (i.e., ζi,j(t) = 1), and it

continues cruising to stop j as long as the conditions for its cruising remain

satisfied (i.e., ηi,j(t) = 1). Once these former conditions are not satisfied

anymore, bus i will begin stopping at stop j.

(b) Dynamics of the logical condition expressing whether a bus is stopping

at a stop or not can be formulated as follows:

δi,j(t+ 1) = λi,j(t) ∨ θi,j(t), (11)

for i = 1, . . . , Kb, j = 1, . . . , Ks, where δi,j(t) ∈ B is the stopping state which

expresses whether bus i is stopping at stop j (δi,j(t) = 1) or not (δi,j(t) = 0),

λi,j(t) ∈ B is the logical condition stating whether bus i begins stopping at

stop j (λi,j(t) = 1) or not (λi,j(t) = 0), whereas θi,j(t) ∈ B is the logical

condition stating whether bus i continues stopping at stop j (θi,j(t) = 1) or

not (θi,j(t) = 0). The begin stopping condition λi,j(t) is defined as:

λi,j(t) , γi,j(t) ∧ exi,j(t), (12)

16



which can be physically described as follows: Bus i begins stopping at stop

j if it is cruising to stop j (i.e., if γi,j(t) = 1) and it reaches stop j (i.e., if

exi,j(t) = 1). Furthermore, the continue stopping condition θi,j(t) is defined

as:

θi,j(t) , δi,j(t) ∧ ¬
((
emj (t) ∨ eci(t)

)
∧ eni,j(t)

)
, (13)

which can be physically described as follows: Bus i continues stopping at

stop j if it is stopping (i.e., if δi,j(t) = 1), and there are passengers wanting

to alight (i.e., if eni,j(t) = 0), or there are passengers wanting to board (i.e., if

emj (t) = 0) and the bus has vacant places (i.e., if eci(t) = 0). Thus, equation

(11) states that bus i begins stopping at stop j if the conditions for it to begin

stopping are satisfied (i.e., λi,j(t) = 1), and it continues stopping at stop j

as long as the conditions for its stopping remain satisfied (i.e., θi,j(t) = 1).

Once these former conditions are not satisfied anymore, bus i begins cruising

to the next stop, namely j + 1.

The simulation model described in this section is a discrete hybrid au-

tomaton; its dynamics evolve through interactions of a finite-state machine

and a discrete-time linear system. Dynamics of the linear system evolves

based on conditions of the binary states (e.g., bus i can move only if γi,j(t) = 1

for some j or the passengers can transfer between bus i and stop j only if

δi,j(t) = 1), while the events driving the (binary) state transitions of the

finite-state machine are defined by conditions on the continuous states of

the linear system. For a clear exposition of the transitions between the bi-

nary states, the finite-state machine part of the BTS dynamics is depicted

schematically in fig. 1, which is a graphical representation of equations (8)

and (11) for bus i and the set of all stops j ∈ [1, . . . , Ks].
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Figure 1: Finite-state machine schematic of the BTS simulation model.

2.1.4. Constraints on Bus Speeds

The speed of bus i is constrained as follows (assuming that the bus is

either cruising to or stopping at stop j):

vi(t) =


0 if δi,j(t) = 1

min(max(ui(t), vmin), vi,max(t)) if γi,j(t) = 1 and ui(t) ≤ Dj−xi(t)

T

Dj−xi(t)

T
if γi,j(t) = 1 and ui(t) >

Dj−xi(t)

T
,

(14)

for i = 1, . . . , Kb, where ui(t) ∈ R is the bus speed command calculated by

the controller, vmin is a constant value for the minimum bus speed, whereas

vi,max(t) is the maximum bus speed that depends on the traffic conditions of

18



the link on which bus i is currently cruising. The physical reasoning is as

follows: (a) If bus i is stopping at time t its speed is 0, (b) if it is cruising

at time t and it is far enough that it cannot pass the next stop j during

the current time step with ui(t), then its speed is constrained by the traffic

conditions, (c) if it will pass the next stop j (with the speed ui(t)) then its

speed is modified such that when the bus reaches the stop its position is

equal to the stop position Dj.

2.1.5. Constraints on Passenger Flows

(a) Total passenger flow boarding bus i at stop h cannot exceed the

passenger flow capacity α ∈ R (person/s) and is allowed to take positive

values only when bus i is stopping at stop h, which can be expressed as:

∑Ks

j=1 q
in
i,h,j(t) ≤ α · δi,h(t), (15)

for i = 1, . . . , Kb, h = 1, . . . , Ks.

(b) Total passenger flow boarding bus i at stop h cannot exceed the

number of vacant places on bus i, which can be formulated as:

T ·
∑Ks

j=1 q
in
i,h,j(t) ≤ ni,max −

∑Ks

j=1 ni,j(t), (16)

for i = 1, . . . , Kb, h = 1, . . . , Ks.

(c) Total passenger flow boarding the bus(es) stopping at stop h with

destination stop j cannot exceed the number of passengers waiting at stop h

with destination stop j, which we express as:

T ·
∑Kb

i=1 q
in
i,h,j(t) ≤ mh,j(t), (17)

for h, j = 1, . . . , Ks, h 6= j.
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(d) Passenger flow alighting from bus i at stop j cannot exceed the pas-

senger flow capacity α and is allowed to take positive values only when bus

i is stopping at stop j, which can be expressed as:

qout
i,j (t) ≤ α · δi,j(t), (18)

for i = 1, . . . , Kb, j = 1, . . . , Ks.

(e) Passenger flow alighting from bus i at stop j cannot exceed the number

of passengers traveling on bus i wanting to alight at stop j, which can be

formulated via the following constraint:

T · qout
i,j (t) ≤ ni,j(t), (19)

for i = 1, . . . , Kb, j = 1, . . . , Ks.

2.2. Simulation of Bus Transport Systems

Using the MLD model defined via the dynamical equations (1)-(11), the

events (4)-(7), and the constraints (15)-(19), it is possible to simulate the

behavior of a single line BTS. The bus speeds vi(t), passenger flow demands

βi,j(t), and the initial values of the continuous and binary states are inputs

to the simulator. The binary events depend on states and model parameters;

thus they can simply be evaluated by considering the corresponding states

and the threshold values (e.g., at time t, if ni,j(t) has a nonzero value, then

eni,j(t) is set to 0, otherwise it is set to 1). Decisions of the passengers re-

garding how they transfer (i.e., qin
i,h,j(t) and qout

i,j (t)) depend on the states and

model parameters in a more complicated way, which can be modeled using
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the following linear program (LP):

maximize
∑Kb

i=1

∑Ks

j=1

(∑Ks

h=1 q
in
i,h,j(t) + qout

i,j (t)
)

subject to constraints (15)–(19)

0 ≤ qin
i,h,j(t),

for i = 1, . . . , Kb, h, j = 1, . . . , Ks, h 6= j

0 ≤ qout
i,j (t),

for i = 1, . . . , Kb, j = 1, . . . , Ks,

(20)

where, at time t, the states δi,h(t), ni,j(t), and mh,j(t) are given constants.

Please note that the LP in equation (20), which is solved at every time instant

t (or approximated via suitable heuristics), is simply forcing the passengers to

enter in the first available bus that has spare capacity and exit immediately

when the bus arrives for the first time in their desired stop. To avoid any

confusion, it is not related to optimization-based control of bus operations

(i.e., it does not have any direct relation with the hybrid MPC given in

section 3), but guarantees a realistic movement of passengers in and out of

the bus. More explicitly, the physical interpretation of the problem (20)

is that the passengers attempt to transfer at the flow capacity α, but are

restricted by physical conditions such as bus capacity constraints, number of

people present in buses and at stops, and, by the presence of buses at stops

(as modeled via δi,h(t)). The procedure for simulating the BTS is given in

algorithm 1.

3. Control of Bus Transport Systems

Achieving schedule reliability is an important goal in BTS control. This

corresponds to minimizing the standard deviation of headways, as headways
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Algorithm 1 MLD bus line simulation

1) Initialize simulation at t = 1 with the initial states xi(1), ni,j(1), mh,j(1),

γi,j(1), and δi,j(1).

2) At time step t, given the previous states xi(t), ni,j(t), mh,j(t), γi,j(t), and

δi,j(t), evaluate exi,j(t), e
m
j (t), eci(t), and eni,j(t), and calculate qin

i,h,j(t) and

qout
i,j (t) by solving the optimization problem (20) (or, via heuristics).

3) Given the values obtained at step 2, the previous states, and the ex-

ogenous inputs vi(t) and βh,j(t), evolve system dynamics by evaluating

the difference equations (1)-(11) to obtain the successor states xi(t + 1),

ni,j(t+ 1), mh,j(t+ 1), γi,j(t+ 1), and δi,j(t+ 1).

4) Repeat steps 2 and 3 for t = 1, . . . , tfinal.

are related to waiting times. Nevertheless, headways are cumbersome to be

integrated into a control framework. Regularizing bus spacings can be used

as a proxy for achieving regular headways, as an ideal BTS condition where

speeds and spacings of all buses are equal corresponds to perfect headway

regularity. Still, under fast evolving conditions, this might not be the case.

Although describing the evolution of headways is straightforward from a

modeling point of view, the nonlinearity makes the integration in a control

framework difficult. We consider this as a future direction of research.

In the following subsections we first describe in detail the main contribu-

tion of the paper in the control aspect: A novel hybrid MPC scheme that

optimizes future BTS trajectories (predicted using a prediction model that

specifies a simplified version of the fully detailed MLD model described in

section 2) over bus speeds by solving an MIQP in real-time considering a

weighted sum of two terms related to spacing regularization and fast BTS
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operation as objective function. We also present in a later subsection two

bus speed controllers for comparison purposes: (i) An integral controller that

reacts to spacing errors that is conceptually similar to the spacings-based

controller proposed by Daganzo and Pilachowski (2011), (ii) a proportional-

integral controller that reacts to both the spacing error and its rate of change,

specifying a straightforward improvement over the integral controller.

3.1. Hybrid Model Predictive Controller

We propose here a hybrid MPC with bus speed actuation considering BTS

dynamics involving interactions between bus motion and passenger transfers

between buses and stops. The prediction model of the hybrid MPC includes

all Kb buses operating on the line but only K̃s(t) active stops (a subset

of all stops, totaling Ks) that are upcoming stops for the buses, with 1 ≤

K̃s(t) ≤ Kb. In general, the number of active stops K̃s(t) is time-varying,

as it is possible that there are two buses cruising to the same stop at the

same time, in which case K̃s(t) would be smaller than Kb. Nevertheless, in

normal conditions with well maintained spacings (such as those reported in

the simulation results), and for a realistic BTS where the number of stops

is larger than the number of buses, K̃s(t) is always equal to Kb. In an

extreme (catastrophic) case in which all buses are cruising to the same stop

then K̃s(t) would be 1. Such a model expresses a simplified version of the

BTS simulation model given in section 2 involving a finite horizon in both

time and space: The finite time horizon is expressed through the prediction

horizon N , whereas the finite horizon in space is realized by considering only

the first upcoming stop for each bus and omitting the rest. A prediction

model based on the complete BTS dynamics given in section 2 would result
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in intractable hybrid MPC problems due to excessive computational burden

associated with the large number of binary variables, whereas the simplified

version given here yields a computationally efficient formulation required for

real-time control.

3.1.1. Dynamics of Continuous States (Prediction Model)

(a) Predicted bus position dynamics can be written as (analogous to equa-

tion (1)):

xi(k + 1) = xi(k) + T · zi(k), (21)

where k is the prediction time step counter, whereas xi(k) ∈ R and zi(k) ∈ R

are the predicted position and active speed of bus i, respectively.

(b) Dynamics of predicted bus accumulation states ni(k) (total accumu-

lation on bus i) and ni,a(k) (the part of ni(k) with destination stop a) can

be written as follows (analogous to equation (2)):

ni(k + 1) = ni(k) + T ·
(
qin
i (k)− qout

i (k)
)

(22)

ni,a(k + 1) = ni,a(k)− Tqout
i (k),

where qin
i (k) ∈ R and qout

i (k) ∈ R are the predicted boarding and alighting

passenger flows, respectively, transferring between stop a and bus i. Equation

(22) is a simplified version of equation (2), where the former has two sepa-

rate states both with only one index since in the prediction model only the

upcoming stop is included, whereas the latter includes the bus accumulation

states for all bus-stop pairs in the line.

(c) Dynamics of the predicted stop accumulation state ma(k) can be
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written as follows (analogous to equation (3)):

ma(k + 1) = ma(k) + T ·

(
βa(k, tc)−

Ia∑
i=1

qin
i (k)

)
. (23)

Equation (23) is a simplification of equation (3), where the former has only

one index since in the prediction model the bus can only interact with its

upcoming stop regarding passenger transfers (and the rest of the stops are

omitted), whereas in the latter the stop accumulation states for all origin-

destination pairs are defined. Here, βa(k, tc) ∈ R is the passenger flow de-

mand accumulating at stop a estimated at tc, whereas Ia is the set of buses

sharing stop a as their first upcoming stop.

3.1.2. Constraints Defining Binary Events (Prediction Model)

(a) The event exi (k) ∈ B expresses (analogous to equation (4)) whether

bus i has reached stop a or not, and is defined as:

exi (k) =

1 if 0 ≤ xi(k)

0 otherwise.

(24)

(b) The event emi (k) ∈ B describes (analogous to equation (5)) whether

there are any passengers at stop a or not:

emi (k) =

1 if ma(k) ≤ 0

0 otherwise.

(25)

(c) The event eci(k) ∈ B expresses (analogous to equation (6)) whether

bus i has available space for passengers or not:

eci(k) =

1 if ni,max − ni(k) ≤ 0

0 otherwise.

(26)
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(d) The event eni (k) ∈ B describes (analogous to equation (7)) whether

there are passengers on bus i that want to alight at stop a or not:

eni (k) =

1 if ni,a(k) ≤ 0

0 otherwise.

(27)

3.1.3. Dynamics of Binary States (Prediction Model)

(a) Predicted cruising state γi(k) ∈ B expresses whether bus i is cruising

to stop a or not, and evolves according to following dynamics:

γi(k + 1) = γi(k) ∧ ¬exi (k). (28)

Equation (28) specifies a simplification over equation (8), where the former

has only one index as the bus can only cruise to its upcoming stop (and

then stop there) while the rest of the stops are not included in the prediction

model, whereas in the latter the cruising states for all bus-stop pairs are

defined since all stops are taken into account in the simulation model given in

section 2. Furthermore, there is no begin cruising condition in equation (28)

(in contrast to (8)), since in the prediction model a bus is simply assumed to

be either cruising to or stopping at its upcoming stop, without any previous

binary states from which to transition.

(b) The predicted stopping state dynamics can be written as:

δi(k + 1) = λi(k) ∨ θi(k), (29)

where δi(k) ∈ B is the stopping state which expresses whether bus i is stop-

ping at its upcoming stop a (δi(k) = 1) or not (δi(k) = 0), λi(k) ∈ B is the

logical condition stating whether bus i begins stopping at stop a (λi(k) = 1)
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or not (λi(k) = 0), whereas θi(k) ∈ B is the logical condition stating whether

bus i continues stopping at stop a (θi(k) = 1) or not (θi(k) = 0). Equation

(29) is a simplified version of equation (11), where the former has only one

index as the bus can only stop at its upcoming stop (and then leave) while

the rest of the stops are omitted from the prediction model, whereas in the

latter the stopping states for all bus-stop pairs are defined. The predicted

begin stopping condition λi(k) is defined as (analogous to equation (12)):

λi(k) , γi(k) ∧ exi (k), (30)

which can be physically described as follows: Bus i begins stopping at stop

a if it is cruising to stop a (i.e., if γi(k) = 1) and it reaches stop a (i.e., if

exi (k) = 1). Furthermore, the predicted continue stopping condition θi(k) is

defined as (analogous to (13)):

θi(k) , δi(k) ∧ ¬
(
(emi (k) ∨ eci(k)) ∧ eni (k)

)
, (31)

which can be physically described as follows: Bus i continues stopping at

stop a if it is stopping (i.e., if δi(k) = 1), and there are passengers wanting

to alight (i.e., if eni (k) = 0), or there are passengers wanting to board (i.e.,

if emi (k) = 0) and the bus has vacant places (i.e., if eci(k) = 0). Thus,

equation (29) states that bus i begins stopping at stop a if the conditions for

it to begin stopping are satisfied (i.e., λi(k) = 1), and it continues stopping

at stop a as long as the conditions for its stopping remain satisfied (i.e.,

θi(k) = 1). Once these former conditions are not satisfied anymore, stopping

state of bus i becomes inactive (i.e., δi(k) = 0) and it is thus allowed to

move (representing its beginning to cruise to the stop after stop a) but it

does not transition to a further cruising state (in contrast to the simulation
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model) since the stops other than the upcoming stop are not included in the

prediction model.

Similar to the simulation model given in section 2, the prediction model

described here is also a discrete hybrid automaton, although with a special

structure of the finite-state machine. Owing to the fact that only the upcom-

ing stop for each bus is included in the model (arising from the finite horizon

in space approximation employed for computational efficiency reasons), the

state transition structure of the binary state dynamics forms an open chain

(in contrast to the closed chain in fig. 1), having only two binary states. This

open chain structure is related to the scenario assumed for the duration of

the prediction horizon: In this scenario, at the first step of the prediction

horizon, bus i is either cruising to its upcoming stop a or stopping there.

During the period when it is stopping at a passengers transfer, and then

the stopping state becomes inactive, allowing the bus to move. As only the

upcoming stop is considered with a finite time horizon, there is no transition

from the stopping state δi to further cruising states for stops beyond a. To

draw clearly the contrast between the simulation model given in section 2

and the prediction model, the finite-state machine part for the prediction

model is depicted schematically in fig. 2, which is a graphical representation

of equations (28) and (29) for bus i and its upcoming stop a.

3.1.4. Constraints on Bus Speed Control Inputs (Prediction Model)

The active speed of bus zi(k) is defined as:

zi(k) =

ui(k) if δi(k) = 0

0 otherwise,

(32)
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Figure 2: Finite-state machine schematic of the BTS prediction model.

expressing the condition that bus i is restricted to have zero speed when it

is stopping (i.e., when δi(k) = 1), where ui(k) is the bus speed control input

for bus i, which is bounded by the minimum and maximum speeds:

vmin ≤ ui(k) ≤ va,max(k, tc), (33)

where va,max(k, tc) is the maximum bus speed that depends on the traffic

conditions at the link ending at stop a, and is thus to be estimated at each

control time step tc.

3.1.5. Constraints on Passenger Flows (Prediction Model)

(a) The predicted boarding passenger flow qin
i (k) ∈ R transferring from

stop a to bus i is defined through the following constraints (analogous to

equations (15), (16), and (17)):

qin
i (k) ≤ α · δi(k)

T · qin
i (k) ≤ ni,max − ni(k) (34)

T · qin
i (k) ≤ ma(k).

(b) The predicted alighting passenger flow qout
i (k) ∈ R transferring from

bus i to stop a is defined through the following constraints (analogous to
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equations (18) and (19)):

qout
i (k) ≤ α · δi(k) (35)

T · qout
i (k) ≤ ni(k).

3.1.6. Initial States (Prediction Model)

Initial bus position state is defined as:

xi(1) = −di,a(tc), (36)

where di,a(tc) ∈ R is the distance of bus i to stop a measured at time tc,

whereas initial cruising state is:

γi(1) = γ̃i,a(tc), (37)

where γ̃i,a(tc) is the cruising state of bus i measured at tc, and initial stopping

state is

δi(1) = δ̃i,a(tc), (38)

where δ̃i,a(tc) is the stopping state of bus i measured at tc, and initial stop

accumulation state is

ma(1) =
Ks∑
j=1

m̃a,j(tc), (39)

where
∑Ks

j=1 m̃a,j(tc) is the total passenger accumulation at stop a measured

at tc, whereas initial bus accumulation states are

ni(1) =
Ks∑
j=1

ñi,j(tc) (40)

ni,a(1) = ñi,a(tc),

where
∑Ks

j=1 ñi,j(tc) and ñi,a(tc) are the total passenger accumulation and the

part destined to a inside bus i at measured tc, respectively.
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3.1.7. Hybrid Model Predictive Control Problem

We formulate the problem of finding the bus speed control input values

that minimize a weighted sum of two terms related to spacing regularization

and fast BTS operation as the following hybrid MPC problem:

minimize
ui(k)

Kb∑
i=1

N∑
k=1

(
e2
i (k + 1) + σ · y2

i (k)
)

(41)

subject to for i = 1, . . . , Kb :

initial states (37), (38), (39), (40)

for k = 1, . . . , N :

0 ≤ qin
i (k)

0 ≤ qout
i (k)

dynamics (21), (28), (29), (23), (22)

constraints (32), (33), (34), (35)

events (24), (25), (26), (27),

where N is the prediction horizon, σ is the weight on fast operation term,

whereas ei(k) and yi(k) are the predicted spacing and speed errors for bus i,

respectively, and defined as follows:

ei(k) = xi,f (k)− 2xi(k) + xi,r(k) (42)

yi(k) = va,max(k, tc)− zi(k),

where xi,f (k) and xi,r(k) are the predicted positions of the buses in front

of and behind bus i, respectively. The problem (41) is an MIQP, which,

although being a non-convex problem, can be solved efficiently (as it yields
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convex QPs when the integrality constraints are dropped) via software pack-

ages developed for mixed-integer programs.

3.2. Integral and Proportional-Integral Controllers

We first define front and rear spacings as follows:

si,f (t) = xi,f (t)− xi(t) (43)

si,r(t) = xi(t)− xi,r(t), (44)

where xi,f (t) ∈ R and xi,r(t) ∈ R are the positions of the buses in front of

and behind bus i, whereas si,f (t) ∈ R and si,r(t) ∈ R are the front and rear

spacings, respectively, with which we can define the spacing error ei(t) ∈ R

of bus i as follows:

ei(t) = si,f (t)− si,r(t). (45)

A discrete-time integral (I) controller with the goal of operating the BTS

such that ei(t) = 0 ∀i ∈ Kb can be formulated as follows:

ui(t) = ui(t− 1) +KI · ei(t), (46)

where ui(t) ∈ R is the control input (bus speed command) for bus i and

KI ∈ R is the integral gain. The I-controller simply updates the control

input as a function of its spacing error ei(t), and how strongly it reacts to

errors can be tuned by changing the KI parameter. Note that the I-controller

is conceptually similar to the bus speed controller proposed in Daganzo and

Pilachowski (2011), in the sense that both controllers update bus speeds

proportional to the spacing errors.
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A straightforward improvement over the I-controller is the discrete-time

proportional-integral (PI) controller that can be formulated as follows:

ui(t) = ui(t− 1) +KP · (ei(t)− ei(t− 1)) +KI · ei(t), (47)

where KP ∈ R is the proportional gain. The PI-controller updates the control

input as a function of the spacing error ei(t) and its rate of change ei(t) −

ei(t−1), and how strongly it reacts to the two terms can be tuned by changing

the KP and KI parameters.

While the I- and PI-controllers are easy to implement, they do not con-

sider information about the number of passengers waiting at the stops or

traveling on the buses, which might disturb the regularity of the spacings.

Furthermore, there is no possibility of taking bus speed constraints explicitly

into account with such controllers. Although computationally more cumber-

some, the hybrid MPC specifies a solution for the aforementioned issues of

the I- and PI-controllers.

4. Simulation Results

4.1. Results of a Congested Scenario

A bus line with 8 buses and 32 stops is considered, where each link is 1 km

long. Simulation sampling time is T = 10 s (which is found to yield a close

match with smaller sampling times) and control sampling time is Tc = 120

s (i.e., the states are updated every 10 s whereas the bus speed control

decisions are updated every 120 s), whereas simulation length is chosen as

tfinal = 6480 steps, which would correspond to 18 hours of real BTS operation.

Passenger demands are constructed with morning and evening peaks, and
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demands to certain stops are chosen higher than the rest for capturing spatial

variability and centers of attraction (i.e., some stops receive higher demands

than others because they are more central). Bus capacity is ni,max = nmax =

80 passengers for all buses, whereas the maximum passenger flow parameter

is α = 0.5 passenger/s. Due to the formulation of the MLD simulation model

there is no restriction on the number of births (i.e., the number of buses that

can simultaneously serve a single stop). If a second bus arrives at a stop while

the bus ahead of it is boarding passengers (specifying also a bus bunching

event that would rarely happen if the BTS is operated with a bus control

system), the passengers will begin boarding both buses. Absolute bounds

on bus speeds are chosen as vmin = 4 m/s and vmax = 20 m/s, whereas the

time-varying maximum link speeds vj,max(t) are generated randomly (with

a normal distribution) to simulate the effect of spatiotemporal variability of

traffic conditions.

Controller gains of the I- and PI-controllers are selected as KP = 1.04

and KI = 0.146, while weighting factor of the hybrid MPC scheme is chosen

as σ = 7000 (reasoning for these will be given later). The hybrid MPC

scheme, with a prediction horizon of N = 12 (i.e., a horizon of 120 seconds

as T = 10 s) is implemented using the YALMIP toolbox (Löfberg, 2004), in

MATLAB 8.5.0 (R2015a) on a 64-bit Windows PC with 3.6-GHz Intel Core

i7 processor and 16-GB RAM), with the MIQPs solved by calling Gurobi

(Gurobi Optimization, 2016) from YALMIP. The prediction horizon value of

N = 12 provides a good balance between performance and computational

effort as it roughly covers the future time period in which buses arrive at

their first upcoming stops, while it does not need to cover longer periods

34



since the rest of the stops are not included in the prediction model as per

the approximation of finite horizon in space. The hybrid MPC scheme is

compared with the I- and PI-controllers, using algorithm 1 for simulating

BTS dynamics (i.e., to represent reality). Note that the execution time of the

simulation algorithm 1 itself is negligible as it takes around 1 milliseconds to

execute one time step (thus, for the present scenario with tfinal = 6480 steps,

the whole simulation takes around 7 seconds), indicating its computationally

lightweight nature. Sensitivity analysis on the bus passenger capacity is also

provided later as it provides interesting observations about the operations of

the system.

Simulation results with the congested scenario are given in figs. 3 to 6,

whereas a summary with numerical values of various performance criteria is

given in table 1. In fig. 3 the bus positions (i.e., time-space diagrams) are

shown for a period of simulation time (that would correspond to the first 4

hours of real time) for the three proposed controllers, where each different

color represents one bus. From fig. 3 it can be seen that the no control case

creates significant bus bunching phenomena, while all three controllers are

able to regularize spacings. It is also clear that the hybrid MPC is superior

to the others in the sense that it is also successful in operating the buses

faster without any degradation to spacing regularity.

Figure 4 shows total demand
∑Ks

h=1

∑Ks

j=1 βh,j(t) (the same for all con-

trollers; zero values not shown), mean stop accumulation
∑Ks

h=1

∑Ks

j=1 mh,j(t)/Ks,

mean commercial speed
∑Kb

i=1 vi(t)/Kb, and mean bus accumulation
∑Kb

i=1

∑Ks

j=1 ni,j(t)/Kb,

all as functions of time, comparing the three controllers for the whole simu-

lation length (which would correspond to 18 hours of real time). Note that
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Figure 3: Bus positions for the first 4 hours of the congested scenario: (a) no control, (b)

I-controller, (c) PI-controller, (d) hybrid MPC.

these curves are down-sampled in time with averaging in 5 minute intervals

for clearer exposition. From the figure the effect of the morning and evening

peaks in the demand on the BTS performance can be seen clearly: In pe-

riods of high demand all controllers suffer from decreased mean commercial

speeds due to higher dwell times, leading to increased passenger accumu-

lations. Hybrid MPC outperforms the other controllers, however, as it is

able to maintain bus speeds that are around 16% larger than those of the I-

and PI-controllers. This translates especially to comparatively lower levels

of accumulations, especially at stops and around the peak hours, ultimately

yielding decreased service times.

Figure 5 shows the headway and spacing error distributions of the three

controllers are shown, from which two observations can be made: (1) Reg-

ularizing spacings through feedback control leads to, as expected, headway

regularity, as all controllers are able to achieve headway distributions that
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Figure 4: Total demand (a), mean stop accumulation (b), mean commercial speed (c),

and mean bus accumulation (d), as functions of time, for the congested scenario.

resemble normal distributions with reasonably low standard deviations, (2)

hybrid MPC is able to decrease the mean of the headway distribution without

any increase in its standard deviation. From the latter it can be concluded

that hybrid MPC can indeed increase BTS operation speed without harm-

ing headway regularity. This is mainly because the hybrid MPC is able to

operate buses at higher speeds. Thus, equal spacing strategies might result

in decreased performance in terms of bus speed and time spent at stops by

passengers, as they overreact and slow down the buses significantly. It is also

clear that minimizing spacing error is not equivalent to minimizing headway

standard deviation.

Figure 6 shows the accumulations ni(t) for buses 1, 2, and 3 for the

congested scenario, comparing the I- and PI-controllers and the hybrid MPC.
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Figure 5: Headway ((a), (c), (e)) and spacing error ((b), (d), (f)) distributions of the

congested scenario (vertical red lines show the mean values, which are 0 for spacing errors

by definition): (a)-(b) I-controller, (c)-(d) PI-controller, (e)-(f) hybrid MPC.

From the figure it can be observed that, compared to the I- and PI-controllers,

the hybrid MPC has a smaller amount of cases with full buses. Owing to the

fact that it can serve the same demand faster (due to higher values of average

commercial speeds without sacrificing headway regularity), the hybrid MPC

is able to better keep the buses away from being completely full, resulting in

a higher service quality.

Overall performances (mean time spent at stop (TSS) and in bus (TSB)

per passenger, mean commercial speed (averaged over time and buses), mean

and standard deviation of headways, standard deviation of spacing errors,

and computation time for hybrid MPC) are summarized with the numeri-

cal values given in table 1, where results of a no control (NC) case (i.e., in
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Figure 6: Accumulations of (a) bus 1, (b) bus 2, and (c) bus 3, for I- and PI-controllers

and the hybrid MPC for the congested scenario.

which the buses are operated at the maximum possible speed) are also in-

cluded for comparison. The no control case suffers from bus bunching and

thus experiences excessive TSS, although its TSB value is slightly lower in

relation to the controlled cases owing to a higher mean commercial speed.

The I-controller yields a relatively slow operation leading to a higher value of

TSS, but is able to achieve both spacing and headway regularity. Compared

with the I-controller, the PI-controller is able to achieve a somewhat faster

operation albeit with a trade-off in headway regularity, leading to slightly

decreased values of TSS and TSB but increased standard deviation of head-

ways. Hybrid MPC is seen to be superior to both controllers in both aspects

of fast BTS operation (i.e., lower service times) and headway regularization

(i.e., smaller standard deviation of headways): (a) It can decrease the total

service time (TST, i.e., the sum of TSS and TSB) of passengers by 21%

compared to the I- and 15% compared to the PI-controller, (b) it improves

headway regularity by 5% compared to the I- and 23% compared to the PI-

controller. Performance of the hybrid MPC is reflected in its smaller mean
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of headways value, owing to a faster operation, but also smaller standard

deviation of headways, suggesting that it can improve these two conflicting

objectives at the same time. In additional simulation studies, the effect of

uncertainty on measurements of bus accumulations was examined by adding

normally distributed noise to the ñi,a(tc) values with standard deviations up

to 5 passengers: From the results it is observed that the performances in

service times and standard deviation of headways show a deterioration up

to only 1% compared to the noise-free case, showcasing the resilience of the

hybrid MPC algorithm against errors in the measurement of ñi,a(tc). The

average/maximum computation times of 0.35/0.7 s needed for solving one in-

stance of the MIQP given in (41) indicate the computational tractability of

the hybrid MPC, suggesting high potential for practical applications requir-

ing real-time control decisions. One might argue that a different objective

function such as minimum TST of all passengers could be employed. While

this is straightforward to implement, the performance of such a controller

is lower than the proposed hybrid MPC, which might look surprising. The

main reason is that the prediction horizon (only one stop ahead) does not

allow for a proper prediction of passenger travel times for the duration of

the trip. A very long prediction horizon might be a solution, but this would

lead to loss of real-time feasibility due to excessive computational burden.

Examining this issue should be an interesting research priority.

4.2. Results of a Set of Congested Scenarios

The congested scenario results given in the previous section represent a

single randomly generated scenario. As the passenger flow demands βh,j(t)

and the maximum bus speeds vi,max(t) are signals including random variables,
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a single random scenario might not be representative of the overall situation.

Thus, to be able to draw a more general picture regarding the performance

differences between the controllers, a series of simulation experiments are

conducted based on 100 randomly generated scenarios.

The results are summarized in fig. 7, which shows the histograms of mean

TST, standard deviation of headways, mean commercial speed, and standard

deviation of spacing errors for the 100 scenarios, comparing the I- and PI-

controllers with the hybrid MPC. The results emphasize the superiority of

the hybrid MPC: On average, it can decrease TST around 18% against the

I- and 14% against the PI-controller, at the same time showing an improve-

ment in headway regularity around 9% against the I- and 28% against the

PI-controller. The TST results are also interesting as they show that the

hybrid MPC is more consistent in its performance regarding passenger de-

lays: While the other controllers have TST values spread around relatively

Table 1: Control Performance Evaluation for a Congested Scenario

performance criterion NC I PI HMPC

mean time spent at stop (min) 19.5 9.5 8.2 6.2

mean time spent in bus (min) 13.4 18.6 17.9 15.9

mean commercial speed (m/s) 7.7 5.5 5.7 6.5

mean of headways (min) – 12.1 11.7 10.3

standard deviation of headways (min) – 1.12 1.38 1.07

standard deviation of spacing errors (m) – 409 690 400

mean/max computation time (s) – – – 0.35/0.7
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large intervals (roughly between 24 and 28.5 minutes for the I- and 24 and

27.5 minutes for the PI-controller), the hybrid MPC consistently performs

in the 21-22.5 minute interval, showcasing the resilience of its performance

in minimizing passenger delays against a diverse set of scenarios. The mean

commercial speed results indicate that the hybrid MPC is able to retain bet-

ter headway regularity even though it drives the buses faster (on average,

17% faster than the I- and 15% faster than the PI-controller) than the other

controllers. Performance of the hybrid MPC in spacing regularity is more

modest compared to that of headways, as seen from the spacing regularity

figure, although it is still superior to the I- and PI- controllers. In any case,

passengers do not experience directly the effect of spacing regulation, what is

important for them is time spent on board (i.e., TSB) and while waiting for

a bus to arrive (i.e., TSS), and that buses arrive relatively regularly at the

stop (i.e., a small standard deviation of headways). All these three metrics

are significantly better using the hybrid MPC. Overall, the hybrid MPC is

successful in achieving a more desirable outcome in terms of practical perfor-

mance, as what is important from both the passenger and the bus operator

points of view is the minimization of TST and regularization of headways.

4.3. Controller Tuning

Performance of the proposed controllers depend on the controller gains for

the I- and PI-controllers, whereas for HMPC it is a function of the objective

function weight σ. A series of simulation experiments with the congested sce-

nario setup presented in the previous section are conducted to evaluate how

the BTS performance changes with the controller parameters, where a set of

100 randomly generated scenarios is repeated for each value of KI , KP , and
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Figure 7: Histograms of the performance criteria from 100 randomly generated scenarios,

comparing the I- and PI- controllers with the hybrid MPC: (a) mean total service time,

(b) standard deviation of headways, (c) mean commercial speed, (d) standard deviation

of spacing errors.

σ. Since PI-controller has two parameters to tune, its KI parameter is taken

as fixed to the best found from the tuning of the I-controller. The results are

shown in fig. 8, which includes plots of mean TSS, mean TSB, standard devi-

ation of headways, mean commercial speed, and normalized mean objective

(i.e., the total of mean TSS, mean TSB, and standard deviation of headways,

separately for each controller, normalized between 0 and 1) as functions of

the controller parameters. These results indicate that: (a) Overall perfor-

mance of the I-controller improves with increasing KI up to a point, and

then there is no change, which can be explained by the fact that it is only
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reacting to the spacing error and thus has no trade-off. The PI-controller

reacts to both spacing error (related to headways) and its rate of change (re-

lated to speed), and thus yields a trade-off between service times/speeds and

headway regularity, which can be clearly seen from the figure where mean

TSS and TSB decrease (along with increasing mean commercial speed) while

standard deviation of headways increases, with increasing KP . Although its

overall performance is superior, tuning results of hybrid MPC suggest a trade-

off very similar to that of the PI-controller, which is to be expected due to

its objective function having two terms related to spacing errors and speeds.

The controller parameter values that attain a minimum for the normalized

mean objective curves (i.e., KI = 0.146, KP = 1.04, and σ = 7000) indicate

a balance between fast operation (i.e., small TST) and headway regularity,

and thus are chosen for the results presented in the previous section with the

congested scenario.

4.4. Sensitivity to Bus Capacity

Bus capacity is critical as it has a strong effect on the overall behavior of

the BTS. Moreover, it is interesting to explore if the BTS can be operated

with buses with smaller capacities without harming performance. This can

create significant savings in bus operations, given that many companies have

fleets of different types. To analyze how changing the bus capacity affects

the BTS performance, a series of simulation experiments are conducted com-

paring the proposed controllers with the simulation setup in the congested

scenario together with bus capacity values changing from 50 to 100. The

results are given in fig. 9, which includes plots showing the four performance

criteria as a function of bus capacity for the three controllers. From these
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Figure 8: Results of controller tuning showing the mean together with the 1st, 5th, 25th,

75th, 95th, and 99th percentiles of the mean time spent at stop (TSS) ((a), (f), (k)), mean

time spent in bus (TSB) ((b), (g), (l)), standard deviation of headways ((c), (h), (m)),

mean commercial speed ((d), (i), (n)), and normalized mean objective ((e), (j), (o)) (with

its minimum indicated by a vertical red line) for I-controller (a)-(e), PI-controller (f)-(j),

and hybrid MPC (k)-(o), as functions of KI , KP , and σ, respectively.

results, two observations can be made: (1) Performance of hybrid MPC is in-

sensitive to changes in the bus capacity values in the 65-100 range, whereas

I- and PI-controllers suffer from increased mean TSS values especially for

nmax ≤ 70, (2) Performance criteria other than the mean TSS seem to be

insensitive to changes in bus capacity. We can thus conclude that by using

a feedback controlled BTS (especially with a hybrid MPC), it is possible to

use smaller buses without harming the BTS performance, indicating poten-
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Figure 9: Results of sensitivity analysis of BTS performance to bus capacity values showing

the mean together with the 1st, 5th, 25th, 75th, 95th, and 99th percentiles of the mean

time spent at stop (TSS) ((a), (e), (i)), mean time spent in bus (TSB) ((b), (f), (j)),

standard deviation of headways ((c), (g), (k)), mean commercial speed ((d), (h), (l)), for

I-controller (a)-(d), PI-controller (e)-(h), and hybrid MPC (i)-(l), as functions of nmax.

tials in cost savings due to decreased bus sizes. Future work can further

investigate the inconvenience caused by overcrowding of smaller buses and

possibly the effect of dwell times, which in our study are considered constant

and not influenced by overcrowding. While such an addition is straightfor-

ward in terms of formulation (e.g., the relationship between dwell times and

overcrowding can be expressed using a piecewise affine function), real data

is required for calibration purposes.
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5. Conclusion

We developed a computationally efficient MLD BTS model able to cap-

ture detailed dynamics of single line bus operations, involving interactions

of bus motion and passenger flows between buses and stops. Taking 1 mil-

liseconds per iteration, this BTS model can be used for simulation-based

in-depth analyses of bus networks for evaluation of bus management/control

schemes. Furthermore, we proposed a novel hybrid MPC design based on

a simplified MLD model for computational tractability. The hybrid MPC

achieves consistently high BTS performance with a dual objective of spacing

regularity and fast operation, by coordinating the buses operating on the line

via manipulating their speeds in real time. By construction, the proposed

MPC formulation results in MIQPs having convex QP subproblems when the

integrality constraints are dropped, enabling real-time feasible solutions with

computation times less than 0.7 seconds. Performance of the hybrid MPC

is compared to classical I- and PI-controllers from literature via simulations

using the proposed MLD model. Results indicate the potential of the hybrid

MPC in decreasing service times and improving headway regularity, even for

decreased bus capacity values. Performance and real-time tractability of the

proposed hybrid MPC suggest high value for practical applications. Future

work could include extensions of the model and controllers for multi-line bus

systems, establishing stability properties of the controllers, and comparisons

of the proposed model with microscopic BTS simulation frameworks.
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