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Economic Model Predictive Control of
Large-scale Urban Road Networks via

Perimeter Control and Regional Route Guidance
Isik Ilber Sirmatel and Nikolas Geroliminis

Abstract—Local traffic control schemes fall short of achieving
coordination with other parts of the urban road network, whereas
a centralized controller based on detailed traffic models would
suffer from excessive computational burden. State estimation
for detailed traffic models with limited observations and un-
predictability of individual driver behavior create additional
complications in the applicability of these models for large
scale traffic control. These point towards the need for designing
network-level controllers building on aggregated traffic models,
which have recently attracted attention through the macroscopic
fundamental diagram (MFD) of urban traffic. Under some con-
ditions, the MFD provides a unimodal, low-scatter, and demand-
insensitive relationship between vehicle accumulation and travel
production inside an urban region. In this paper we propose
MFD-based economic model predictive control (MPC) schemes to
improve mobility in heterogeneously congested large-scale urban
road networks. For more realistic simulations of urban networks
with route guidance actuation based control, a new model with
cyclic behavior prohibition is developed. This paper extends upon
earlier works on perimeter control based MPC schemes with
MFD modeling by integrating route guidance type actuation,
which distributes flows exiting a region over its neighboring
regions. Performance of the proposed schemes are evaluated
via simulations of congested scenarios with noise in demand
estimation and measurement errors. Results show the possibility
of substantial improvements in urban network performance, in
terms of network delays and traveled distance, even for low levels
of driver compliance to route guidance.

Index Terms—Model predictive control (MPC), urban traffic
control, perimeter control, route guidance, macroscopic funda-
mental diagram (MFD).

I. INTRODUCTION

URBAN traffic congestion continues to trouble the cities
of modern society and remains a challenging problem.

Application of automatic control methods to traffic problems
gained increasing interest for ensuring efficient and reliable op-
eration of urban networks (for reviews refer to [1], [2]). Cou-
pling advanced control techniques with complex traffic models
requires challenging improvements on both fields. There is
considerable literature on methods for controlling a limited
area of the urban network, which are usually based on detailed
micro- or mesoscopic models and involve control schemes that
consider only a small part of the whole urban network, such
as a set of signalized intersections. In their locale of operation,
these methods provide good performance for undersatured
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traffic conditions, but they also have important shortcomings:
(a) They are inadequate in dealing with congested conditions
and heterogeneous distribution/spatiotemporal propagation of
congestion (especially when spillbacks occur), (b) there is
no coordination between controllers operating in different
parts of the network, leading to uncoordinated decisions
and potentially conflicts, and ultimately to suffering network
performance, (c) they require information on highly detailed
traffic states, which might be difficult to measure/estimate.
Thus, the need for developing control schemes that can achieve
coordination between regions of the network, can handle
severely and heterogeneously congested conditions, and rely
only on aggregated traffic information that is relatively easy
to measure, points to the direction of exploring network-level
controllers for large-scale urban road networks. The main idea
of network-level aggregated control is to create an additional
layer in a hierarchical structure before the local controllers
are implemented (see [3]). Improving the overall condition
in critical areas of a city can help the aforementioned local
schemes to improve the local objectives as disturbances under
mild conditions will have less negative effect.

Since the beginning of 1980s many works have focused
on modeling and control of urban traffic, which usually
consider mesoscopic models with link-level dynamics and
controllers using local information. As one of the relatively
recent studies, based on the linear-quadratic regulator problem,
traffic-responsive urban control (TUC) [4] represents a multi-
variable feedback regulator approach for network-wide urban
traffic control, which has been tested both via simulations
and field implementations (see [5]). Although TUC can deal
with oversaturated conditions via minimizing and balancing
the relative occupancies of network links, it may not be
optimal for heterogeneous networks with multiple pockets of
congestion. Based on the max-pressure approach, many local
control schemes have been proposed for networks of signalized
intersections (see [6]–[8]), which involve evaluations at each
intersection requiring information exclusively from adjacent
links. Although the high level of detail in mesoscopic models
is desirable for simulation purposes, the increased complexity
results in complications for control. Furthermore, local con-
trollers might not be able to operate properly under heavily
congested conditions, as they do not protect the congested
regions upstream. Another disadvantage of sophisticated local
controllers is that they might require detailed information on
traffic states, which are difficult to measure or estimate. The
interaction between selfish route choices and the responsive
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pressure-driven traffic control policies are discussed in the P0
scheme and its extensions for simple networks (see [9], [10]).

In the recent years, the two layer hierarchical control
approach for urban networks appeared as an alternative to
the local traffic control methods established in the litera-
ture. At the upper layer a network-level controller optimizes
network performance via manipulating macroscopic traffic
flows through interregional actuation systems (e.g., perimeter
control), whereas at the lower layer the local controllers
regulate mesoscopic traffic flows through intraregional actua-
tion systems (e.g., signalized intersections). The macroscopic
fundamental diagram (MFD) of urban traffic garnered recent
interest as a tool for developing aggregated models of urban
networks, enabling low complexity modeling of whole cities
and efficient network-level control design for the upper layer.

First proposed by [11] and experimentally proven to exist
for large-scale urban areas by [12], the MFD enables modeling
of an urban region with roughly homogeneous accumulation
(i.e., small spatial link density heterogeneity) by providing
a unimodal, low-scatter, and demand-insensitive relationship
between accumulation and trip completion flow [12]. Although
a powerful modeling tool, the MFD has also its challenges,
which might undermine its usefulness. Firstly, hysteresis phe-
nomena, which can be observed on the onset or offset of
congestion, may adversely affect the shape of the MFD (see
[3], [13] for details). Secondly, heterogeneous distribution
of accumulation, especially in congested conditions, leads to
the loss of a well-defined MFD for the urban region (see
[14], [15]). Despite these shortcomings, the MFD substantially
reduces the complexity of traffic models, and is thus an
efficient modeling tool for expressing aggregated dynamics
of urban traffic networks, opening the way for the design
of network-level control schemes for the upper layer of the
hierarchical approach (integration of clustering techniques are
shown to be beneficial with respect to the aforementioned
shortcomings, see, e.g., [16], [17]). Thus, in the last decade
the MFD attracted interest in the traffic control literature as
an aggregated modeling tool for urban networks. MFD-based
control schemes have been proposed by many researchers
for single-region [18]–[22] and multi-region [3], [23]–[26]
urban networks. More detailed literature reviews in MFD-
based modeling and control can be found in [27] and [28].

The design of network-level controllers for urban networks
with MFD-based modeling requires consideration of the fol-
lowing points: (a) Constraints on the traffic states and control
inputs, (b) nonlinear dynamics of the MFD-based network
model, (c) possibility of having access to future information
(e.g., estimates of the trip demands based on historical data).
These points strongly suggest the suitability of model predic-
tive control (MPC), which is an advanced control technique
based on real-time repeated optimization, its most important
advantage over other control methods being its ability to
handle constraints systematically. A computationally efficient
method for tackling infinite horizon, constrained optimal con-
trol problems (OCPs), MPC provides approximate solutions
to such problems via solving a series of finite horizon open-
loop OCPs in receding horizon fashion. At each sampling
instant, using the current state of the system as initial state,

the finite horizon OCP is solved to obtain a sequence of
optimal controls, the first of which is applied to the system and
the whole procedure is repeated in the next sampling instant.
Discussions on important issues of MPC can be found in [29]
and an overview of theoretical aspects is given in [30].

Application of MPC to traffic control problems saw in-
creased interest in the ITS literature in the last 15 years: Ramp
metering for freeway networks [31]–[33], variable speed limits
[34], [35], integration of ramp metering with variable speed
limits [36] and with route guidance [37] for freeway networks,
signal control for urban networks [38], [39], signal control
for mixed urban and freeway networks [40], and control of
logistics systems and railways [41], [42].

MPC schemes with MFD-based prediction models for urban
networks began to appear only recently in the literature. In
the first work on this direction, a nonlinear MPC is proposed
for a two-region urban network equipped with perimeter
control actuation [43]. For the cooperative control of a mixed
transportation network consisting of a freeway and two urban
regions, an MPC scheme is developed in [44]. A hybrid MPC
is developed in [45] for an urban network equipped with both
perimeter control systems and switching signal timing plans.
In [3], a model capturing the dynamics of heterogeneity is
developed together with a hierarchical control system with
MPC on the upper level. The aforementioned works on MFD-
based MPC for urban networks do not explore actuation via
routing the the drivers. Although there are also some recent
attempts on this direction [28], [46], enhancing perimeter
control with route guidance actuation still remains unexplored.

In this paper network-level economic MPC schemes in-
tegrating perimeter control and regional route guidance are
proposed to improve mobility in urban networks. In contrast
to standard MPC where the objective function is related
to a control goal such as regulation or setpoint tracking,
economic MPC involves objective functions that express eco-
nomically optimal plant operation (e.g., maximizing profits
or minimizing time spent). Firstly, a new MFD-based urban
network model is developed with cyclic behavior avoidance,
i.e., prohibiting vehicles from flowing back and forth between
neighboring regions, which is important for simulating urban
networks under closed-loop with route guidance based control
schemes. Furthermore, the problem of finding the perimeter
control and route guidance inputs for a multi-region urban
network to minimize total time spent (TTS) is formulated
as an economic MPC problem, along with various actuator
configurations. The analysis in this work sheds some light to
the demand conditions for which coupling of perimeter control
and route guidance can prove beneficial. Results indicate that
the proposed MPC schemes can significantly decrease network
delays and, when route guidance is coupled with perimeter
control, even low driver compliance levels are sufficient to
improve network performance.

II. MODELING OF LARGE-SCALE URBAN NETWORKS

A. MFD-based Modeling of a Multi-region Urban Network

We consider an urban network R with heterogeneous
distribution of accumulation, consisting of R homogeneous
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Fig. 1. Schematic of an urban network with 7 regions.

regions, i.e., R = {1, 2, . . . , R}, each with a well-defined
outflow MFD, defined via GI(NI(t)) (veh/s) expressing the
trip completion flow (i.e., outflow) at accumulation NI(t). A
network consisting of 7 regions is schematically shown in
fig. 1. The exogenous inflow demand generated in region I
with destination J is QIJ(t) (veh/s), whereas NIJ(t) (veh) is
the accumulation in region I with destination J , and NI(t)
(veh) the total accumulation in region I , at time t; I, J ∈ R;
NI(t) ,

∑
J∈RNIJ(t). Between each pair of neighboring

regions I and H (I ∈ R, H ∈ NI , where NI is the
set of regions neighboring region I) there exists perimeter
controls UIH(t) and UHI(t) ∈ [0, 1] that can manipulate
the transfer flows. Furthermore, each region is equipped with
regional route guidance controls θIHJ(t) (I ∈ R, H ∈ NI ,
J ∈ R \ {I}), that can distribute the transfer flows exiting a
region over its neighboring regions. Dynamics of an R-region
MFDs network are [3], [28]:

ṄII(t) = QII(t)−MII(t) +
∑
H∈NI

UHI(t)MHII(t) (1a)

ṄIJ(t) = QIJ(t)−
∑
H∈NI

UIH(t)MIHJ(t)

+
∑

H∈NI ;H 6=J

UHI(t)MHIJ(t), (1b)

for I, J ∈ R, where MII(t) (veh/s) is the exit (i.e., internal
trip completion) flow from region I to destination I:

MII(t) =
NII(t)

NI(t)
GI(NI(t)) (2)

and MIHJ(t) (veh/s) is the transfer flow from region I to
destination J through the next immediate region H:

MIHJ(t) = θIHJ(t)
NIJ(t)

NI(t)
GI(NI(t)), (3)

with MHII(t) and MHIJ(t) defined similarly, expressing the
transfer flows from H through I with destinations I and J ,
respectively. It is assumed that trips inside a region have
similar lengths (i.e., the distance traveled per vehicle inside
a region does not depend on the origin and destination of the
trip). Simulation and empirical results [12] suggest that the
MFD can be approximated by an asymmetric unimodal curve
skewed to the right (i.e., the critical accumulation N cr

I , which

maximizes GI(NI(t)), is less than half of the jam accumula-
tion N jam

I , which puts the region in gridlock). Thus, GI(NI(t))
can be expressed with a third-order polynomial in the variable
NI(t), i.e., GI(NI(t)) = AIN

3
I (t) + BIN

2
I (t) + CINI(t),

where AI , BI , and CI are estimated parameters.
Transfer flows are influenced by the boundary capacity

between regions I and H , as high accumulation in region
H might restrict the reception of inflows from the boundary,
which can be formalized through the following equation
expressing capacity-restricted transfer flow M̂IHJ(t) [3], [28]:

M̂IHJ(t) = min

(
MIHJ(t), CIH(NH(t))

MIHJ(t)∑
K∈RMIHK(t)

)
(4)

where CIH(NH(t)) (veh/s) is the boundary capacity between
regions I and H that depends on NH as follows [3]:

CIH(NH) =

C
max
IH if 0 ≤ NH < α ·NH,jam

Cmax
IH

1−α (1− NH

N
jam
H

) if α ·N jam
H ≤ NH ≤ N jam

H ,

(5)
where Cmax

IH (veh/s) is the maximum boundary capacity, N jam
H

(veh) is the jam accumulation of the receiving region H ,
whereas α ·N jam

H (with 0 < α < 1) specifies the point where
CIH(NH) starts decreasing with increasing accumulation.

The boundary capacity constraint can be omitted in the
prediction model of MPC for computational advantage. The
physical reasoning of this omission is that (i) the boundary
capacity decreases for accumulations much larger than the
critical accumulation, and (ii) the controller will not allow the
regions to have accumulations close to gridlock [44]. The ef-
fect of tightening boundary capacity is studied in section IV-F.

The assumption of a low-scatter regional outflow MFD is
based on the equivalent assumption of a time-invariant regional
trip length. While an adequate model for control design with
simplified system dynamics without delays (i.e., it considers
outflows equal to the ratio of production over constant trip
length), and although there are empirical verifications about
its validity via aggregated data (e.g., [12]), the MFD should
not be considered as a universal law. For example, strong
fluctuations in the demand that create fast evolving transients
can influence the trip length distribution in a region at a
specific time, potentially causing the ratio of production over
trip length approximation of outflow to have inaccuracies.
While we consider this a valid assumption for a range of
cases, further research would be useful to study under what
conditions more complex dynamics (with delays) are required
(see, e.g., some analysis in [47]), which is a research priority.

B. Cyclic Behavior Prohibiting Urban Network Model

The urban network model (1) has no memory of the region
the vehicles were previously, thus does not prohibit vehicles
from flowing back and forth between neighboring regions (i.e.,
it permits cyclic behavior). While this memoryless choice of
routes is not crucial when only perimeter control actuation is
applied, it is physically important for route guidance based
schemes, where the controller may try to emulate perimeter
control actuation via cyclic routes. We also need to be able
to compare travel times and trip lengths for inflow demands
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QIJ(t) and for various control strategies and driver compli-
ance levels. Thus, instead of NIJ and MIHJ we have to
introduce more detailed states. With NOGIJ and MOGIHJ

denoting the accumulation and flow, respectively, with origin
O, previous region G, current region I , destination region J ,
and immediate next region H , the dynamics keeping memory
of origin and previous regions can be written as:

ṄIIII(t) = QII(t)−MIIIII(t), ∀I ∈ R, (6a)

ṄIIIJ(t) = QIJ(t)−
∑
H∈NI

UIH(t)MIIIHJ(t),

∀I, J ∈ R, J 6= I, (6b)

ṄOGII(t) =
∑

F∈N∗
G\{I}

UGI(t)MOFGII(t)−MOGIII(t),

∀O,G, I ∈ R, G ∈ NI , O 6= I, (6c)

ṄOGIJ(t) =
∑

F∈N∗
G\{I,J}

UGI(t)MOFGIJ(t)

−
∑

H∈NI\{O,G}

UIH(t)MOGIHJ(t),

∀O,G, I, J ∈ R, G ∈ NI ,
O 6= I, O 6= J, G 6= J, J 6= I, (6d)

where N ∗G is the set containing the neighboring regions of
G and region G itself. Note that if the last two indices of
a flow term are identical, then this denotes an exit flow (as
next and final region are the same); it denotes a transfer flow
otherwise. Note that in (6a) there are no control inputs as flows
are internal and uncontrolled. Note also that in (6c)–(6d) the
positive terms of the right hand side are controlled transfer
flows from the neighboring regions to the current region. The
exit and transfer flow terms can be calculated as follows:

MOGIHJ(t) = θOGIHJ(t)
NOGIJ(t)

NI(t)
GI(NI(t)), (7)

where θOGIHJ denotes the fraction of flows in an identical
way with the flow terms, having the same 5 indices.

Using (6) as the simulation model (i.e., the plant represent-
ing reality) with MPC controllers having (1) as the prediction
model requires the transfer of variables between the two
models as follows:∑

O∈R\{J}

∑
G∈R\{J}

NOGIJ(t) = NIJ(t), ∀I, J ∈ R (8)

for the accumulations states and

θOGIHJ(t) =

{
θIHJ(t) if H 6= G,

0 otherwise
(9)

∀O,G, I, J ∈ R,
G ∈ NI , H ∈ NI \ {O}
O 6= I, O 6= J, G 6= J, J 6= I

for the fraction of flows, where cycle-inducing θOGIHJ terms
(i.e., those with H = G) are forced to be 0. Owing to this,
the model (6) can prohibit cycles of length 2, and is thus a
more realistic representation of urban network dynamics. For
prohibiting longer cycles, (6) should be extended with longer
route memory, but this is not considered in this work since
cycles longer than two are assumed to be negligible.

III. OPTIMAL CONTROL OF URBAN NETWORKS VIA
PERIMETER CONTROL AND REGIONAL ROUTE GUIDANCE

A. Model Predictive Control Problem Formulation

We formulate the problem of finding the UIH and θIHJ
values that minimize TTS (for a finite horizon) as the following
discrete time economic nonlinear MPC problem:

minimize
U, θ

Tc ·
Np−1∑
k=0

‖N(k)‖1 (10)

subject to N(0) = N̂(tc)∣∣∣U(0)− Û(tc − 1)
∣∣∣ ≤ ∆U∣∣∣θ(0)− θ̂(tc − 1)
∣∣∣ ≤ ∆θ

for k = 0, . . . , Np − 1 :

N(k + 1) = f(N(k), Q(k), U(k), θ(k))

0 ≤
∑
j∈R

NIJ(k) ≤ N jam
I , ∀I ∈ R

Umin ≤ UIH(k) ≤ Umax, ∀I ∈ R, H ∈ NI
0 ≤ θIHJ(k) ≤ 1, ∀I, J ∈ R, I 6= J,H ∈ NI∑
H∈NI

θIHJ(k) = 1, ∀I, J ∈ R, I 6= J

if k ≥ Nc :

U(k) = U(k − 1)

θ(k) = θ(k − 1),

where Tc is the control sampling time, N(k), Q(k), U(k), and
θ(k) are vectors containing all NIJ(k), QIJ(k), UIH(k), and
θIHJ(k) terms, respectively, with k being the control interval
counter, f is the time discretized version of eq. (1)–(3), tc is
the current control time step and N̂(tc) is the measurement
taken at tc, Û(tc − 1) and θ̂(tc − 1) are the control inputs
applied to the plant previously, Np and Nc are the prediction
and control horizons, whereas ∆U and ∆θ are the rate limits
on perimeter control and route guidance inputs, respectively.

The problem (10) is a nonconvex nonlinear program (NLP),
which can be solved efficiently via, e.g., sequential quadratic
programming (SQP) or interior point solvers.

We propose three MPC schemes: (i) perimeter control MPC
(PC) has UIH as control input, while drivers are free to choose
their own routes (i.e., θIHJ ), which are assumed fixed to their
measured value, at tc, for the prediction horizon. (ii) For route
guidance MPC (RG) θIHJ is the control input, while UIH
is fixed to Umax. (iii) Perimeter control and route guidance
MPC (PCRG) has access to both actuators. While θIHJ(tc) is
difficult to estimate with fixed location sensors, use of mobile
sensors with advanced estimation techniques provide strong
potential in this direction (see, e.g., [48]).

Performance metrics for evaluating the MPC schemes are
TTS and total traveled distance (TTD):

TTS = Ts ·
Texp∑
t=1

∑
I∈R

NI(t),

TTD = Ts ·
Texp∑
t=1

∑
I∈R

LI ·
(
MII(t) +

∑
H∈NI

∑
J∈R\I

M̄IHJ(t)

)
,
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where the flow M̄IHJ(t) (veh/s) is defined as M̄IHJ(t) =
UIH(t)θIHJ(t)MIJ(t). It is important to look at both perfor-
mance metrics, as route guidance might enforce some drivers
to take significantly longer routes for the system benefit.
Such a result would be difficult to be acceptable in practice
as drivers would follow the proposed routes only if their
individual travel time is not significantly worse.

For a single-region city governed by an outflow MFD,
minimizing TTS will result in maximizing outflow (which
is equivalent to maximizing TTD), as the objective is to let
vehicles finish their trips as soon as possible. Thus, as proven
in [18], the best strategy is to keep the region at its critical
accumulation if the delays of vehicles waiting outside the
network (i.e., the virtual queues) are considered.

For a multi-region city (as is the case in the paper),
however, it might be impossible to keep all regions under or
at critical accumulation. Then, control via tracking regional
accumulation setpoints is difficult, as it is not straightforward
to find those setpoints that minimize TTS (since these might be
time-varying and depend on the demand pattern). Maximizing
TTD, on the other hand, might create very long routes for
some vehicles especially under uncongested conditions due to
detouring, which would decrease network outflow.

B. Controller Tuning and Computational Efficiency

MPC performance is strongly influenced by the prediction
horizon Np. Computational effort is affected also by the
chosen direct method and NLP solver (see [49] for details).
To study the relations between all of the above, a series of
simulation experiments (based on the congested scenario in
section IV-B) is conducted with varying values of Np (with
Nc fixed to 2 and a control sampling time of Tc = 240 s) and
various direct methods (see [50] for details). Direct multiple
shooting (DMS, [51]) and direct collocation (DC) (solved with
the solver IPOPT [52]) results for all three MPC schemes1 are
included together with direct single shooting (DSS) (solved
with an SQP solver) for PC. Using SQP for DMS and DC is
computationally disadvantageous, since SQP favors small and
dense NLPs (such as those arising from DSS), while DMS
and DC yield large and sparse NLPs (which are amenable to
efficient solutions via e.g. IPOPT). The results, given in fig. 2,
show the TTS performance and the average CPU times, which
indicate that: (a) TTS performance is fairly insensitive to the
choice of Np for Np ≥ 7, (b) DSS is favorable for PC, whereas
DC is favorable for RG and PCRG, (c) even for short horizons
PCRG is able to yield high improvements.

IV. CASE STUDIES

A. Network Description and Simulation Setup

All simulations are conducted on a 7 region urban network
(see fig. 1), with the simulation model given in (6) for
representing the reality. A unit MFD is considered with the pa-
rameters Ā = 4.133 ·10−11, B̄ = −8.282 ·10−7, C̄ = 0.0042,

1Implementation is done via the CasADi toolbox [53] in MATLAB 8.5.0
(R2015a), on a 64-bit Windows PC with 3.6-GHz Intel Core i7 processor and
16-GB RAM.
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Fig. 2. (a) Percent improvement in TTS over NC and (b) average CPU times
for the MPC schemes with various direct methods as a function of Np.

jam accumulation N̄ jam = 104 (veh), critical accumulation
N̄ cr = 3.4 · 103 (veh), maximum outflow G(N̄ cr) = 6.3
(veh/s), with an average trip length of L̄ = 3600 m, which
are consistent with the MFD observed in a part of downtown
Yokohama (see [12]). Each region is assumed to have a
different MFD that is a (within ±10%) scaled version of the
unit MFD. Boundary capacity effect is included, with values
C̄max
IH = 3.2 veh/s and ᾱ = 0.64 for the unit MFD.
Based on the results in section III-B, the prediction and

control horizons are chosen as Np = 7 and Nc = 2 for the
MPC schemes. Simulation sampling time is 30 s while the
length of the simulation experiment is Texp = 240 (in number
of simulation steps), giving an effective length of 120 minutes.
Bounds of UIH are Umin = 0.1 and Umax = 0.9, whereas the
rate limits are ∆U = 0.2 and ∆θ = 0.1, to reflect the fact that
it is more difficult to cause abrupt changes in routing.

For capturing the effect of measurement noise in accumula-
tion states (as accumulations have to be measured from fixed
and mobile sensors, which invariably have noise), we add
random noise terms with normal distribution:

ÑIJ(t) = NIJ(t) +NIJ(t) · N (0, σ2
NIJ

), ∀I, J ∈ R, (11)

where the noise has zero mean and its variance is chosen as
σ2
NIJ

= 0.25 in the simulations. Demand uncertainty is also
considered, with the MPC having access to average demand
profiles, while the actual inflow demands have random noise:

Q̃IJ(t) = QIJ(t) +QIJ(t) · N (0, σ2
QIJ

), ∀I, J ∈ R, (12)

with the variance chosen as σ2
QIJ

= 0.25 in the simulations,
representing presence of large noise.

The MPC controllers are compared with a no control (NC)
case, in which UIH are fixed to Umax, while drivers are free
to choose their routes. In simulations this is captured by
calculating θIHJ by a logit model (see [54]) using the current
travel times from I to destination J through a predefined
finite number of shortest sequences of regions connecting
the two, calculated with Dijkstra’s algorithm for K-shortest
paths (K = 3 for this paper). As drivers adapt to traffic
conditions in real time, the θIHJ values are updated at each
control time step. The logit model relaxes the assumption that
drivers always choose the physical shortest path. Simulations
using logit model thus tend to be more realistic as drivers
rarely have perfect information and do not always behave as
rational actors. Parameters of the logit model can be adjusted
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to reflect the amount of information available to drivers or
their sensitivity to travel time differences between routes.

An interesting point to investigate is about deciding what the
preferred actuation scheme is (i.e., PC, RG, or PCRG) under
different demand conditions, given that there is a nonnegligible
installation cost. While in principle the regions of the city
that attract most of the trips should operate at the critical
accumulation that maximizes flow (e.g., [18] proves this for
single region systems), this might not be the case for multiple
regions with competing objectives. Our objective is also to
investigate the attractivity of the regions of a city with respect
to (i) destinations and (ii) crossing zones. While point (i)
is clear, with respect to point (ii) a region might attract a
lot of trips simply because many shortest paths are passing
from this region (even if destinations are elsewhere). Thus,
two simulation parameters are defined to construct various
scenarios: (a) The ratio of demands with destination region
4 (i.e., city center) to demands from periphery to periphery,
denoted by ρ and (b) driver compliance level, denoted by γ.
The ratio ρ, expressing the relative intensity of the inflow
demands towards city center, is defined as follows:

ρ =

∑Texp
t=1

∑
I∈RQI4(t)∑Texp

t=1

∑
I∈R\{4}

∑
J∈R\{4}QIJ(t)

, (13)

whereas the driver compliance level γ (also defined as a
constant for a single simulation experiment) indicates the
percentage of drivers following the route guidance recom-
mendations of the traffic control scheme (i.e., either RG
and PCRG), which is used in obtaining the route guidance
command θIHJ value for the control step tc as follows:

θreal
IHJ(tc) = γθMPC

IHJ(tc) + (1− γ)θlogit
IHJ(tc), (14)

where θreal
IHJ(tc) is the realized route guidance command (i.e.,

the value used in simulation), whereas θMPC
IHJ(tc) and θlogit

IHJ(tc)
are the outputs of the MPC and the logit model, respectively.

B. Control Performance under Congested Conditions

Let us describe the base case scenario: The network is
uncongested at the beginning, but faces increased inflow
demands as time progresses. The driver compliance level γ
is 100% and ratio of demands ρ is equal to 0, meaning no
trips have city center as destination–nevertheless this is an
important region of attraction as many trips prefer to cross
the center due to short distance. The results are given in
fig. 3, where the evolution of regional accumulations (fig. 3a
to 3d) are shown alongside graphs of time spent in network
(fig. 3e), cumulative traveled distance (fig. 3f), outflow of city
center (i.e., region 4) (fig. 3g), and the noisy inflow demands
Q̃IJ(t) (fig. 3h), all as a function of simulation time, for the
no control (NC) case and the three MPC schemes (please
refer to the legends in fig. 3 for descriptions of each figure).
A summary of the results is given in table I, which shows
the two performance metrics about time and distance (i.e.,
TTS and TTD), improvement over the NC case for TTS,
increase in TTD over the theoretically possible minimum TTD
(which is calculated by considering that all vehicles are able
to take the physical shortest path to their destinations under

TABLE I
PERFORMANCE EVALUATION FOR CONGESTED SCENARIO

Control
scheme

TTS
(×107

veh·s)

TTS
decrease

over
NC (%)

TTD
(×108

veh·m)

TTD
increase

over theo.
min. (%)

Avg.
CPU
time
(s)

Max.
CPU
time
(s)

NC 9.50 – 4.81 25 – –
PC 7.58 20 4.60 19 0.66 1.59
RG 7.02 26 4.47 16 6.43 8.22

PCRG 6.76 29 4.35 13 8.45 10.18

free flow conditions, and is equal to 3.87 · 108 veh·m), and
the CPU times for the MPC schemes. The results indicate
that all MPC schemes are capable of improving mobility in
the urban network, as they have decreased values of both the
TTS and TTD metrics, in comparison to the NC case. Noting
that control sampling time Tc is chosen as 240 s, the CPU
time results given in table I suggest that the schemes are
computationally tractable, as their CPU times are negligible
in comparison to Tc.

PCRG is superior in distributing the vehicle flows efficiently
over the whole network, which translates to efficient usage
of the network capacity, leading to less congestion and also
decreased values of TTS. This is clearly seen in the regional
accumulation plots (b)–(d) in fig. 3, where PCRG can suppress
congestion evenly in all regions. Note also that for all three
strategies not all regions are able to operate below the critical
value of accumulation, so even the best control scheme still
experiences some congestion for some regions, notably for
smaller durations. This highlights the importance of using
prediction and aggregated future O-D information via MPC.
For example, PI type controllers without demand information
(see [19], [24], [55]) are successful when all regions can
operate close to their critical accumulations. But if this is not
possible due to high demand, aggregated O-D information is
expected to further improve network performance.

The NC case cannot avoid severe congestion close to
gridlock, leading to drastic decrease in outflow for the city
center (as seen in fig. 3g) and thus inefficient use of the
city center capacity for transferring flows from periphery to
periphery. This is crucial for both TTS and TTD metrics,
since routes through the city center are generally the physical
shortest paths connecting two opposing peripheral regions. The
MPC schemes, on the other hand, make efficient use of the
city center as seen in the city center outflow (i.e., G4(N4(t)))
plot in fig. 3g, which shows their success in keeping the city
center close to critical accumulation N cr

4 until network starts
to unload. It is interesting that city center remains severely
congested even if drivers are adaptive and update their routes
based on travel time information (i.e., the NC case), which is
not the case when control is applied.

Route guidance based schemes can improve both TTS and
TTD metrics compared to the PC scheme due to their authority
over routing, increasing the percentage of drivers using the
physical shortest path. Thus, vehicles spend less time and
travel for shorter distances before exiting the network. The
percentage of drivers that are momentarily using the physical
shortest path to their destinations is given in fig. 4 for NC
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Fig. 3. Results of the congested scenario for the no control (NC) case and the three MPC schemes. Regional accumulations for (a) NC, (b) PC, (c) RG, (d)
PCRG. Comparison of the four cases for (e) time spent in network, (f) standard deviation of regional accumulations, (g) outflow of city center. (h) Noisy
inflow demand profiles, expressing demands for trips between 5 origin-destination region pairs.
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Fig. 4. Usage of physical shortest path for the congested scenario.

and the three MPC schemes. This result shows that route
guidance based schemes succeed in making more drivers use
the physical shortest path, explaining the improvement in TTD.
The fact that regional route guidance (which tries to develop
conditions close to system optimum) might create worse travel
times for some users is analyzed later in the paper.

C. Effect of Cyclic Behavior Prohibition

To examine the effect of absence of cyclic behavior prohi-
bition in the proposed model, given in section II-B, a series of
simulation experiments are conducted based on the scenario in
section IV-B. The model formulation is changed via relaxing
the condition H 6= G in eq. (9) so as to allow cyclic flows. To
summarize the presence of cyclic behavior, the percentage of
vehicle flows that are returning to the region they came from
among the total vehicle flows is considered:∑

O∈R
∑
K∈R\G

∑
G∈R\K

∑
K∈R\G

∑
J∈R M̄OKGKJ(t)∑

O∈R
∑
G∈R

∑
IinR

∑
H∈R

∑
J∈R M̄OGIHJ(t)

,

where the vehicle flow M̄OGIHJ(t) is defined as follows

M̄OGIHJ(t) = UIH(t)θOGIHJ(t)MOGIJ(t).

The results are given in fig. 5, showing this percentage as a
function of simulation time. There are substantial cyclic flows
occurring in the simulation, which can be avoided with the use
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Fig. 5. Ratio of cyclic to total flows for NC and the three MPC schemes.

of the proposed model, supporting the use of such a model
with more detailed states to represent the plant.

D. Driver Compliance and Demand Ratio ρ Analysis

In an ideal case with route guidance actuation, all drivers
would follow θIHJ exactly, but this may not be the case in
reality as some drivers might prefer choosing their own routes.
To analyze how driver compliance affects route guidance
performance, a series of simulations with four different values
of ρ are conducted by varying compliance level γ from 0% to
100%, which are summarized in fig. 6. Interestingly, the results
differ with varying ratio of demand that has the city center as
a destination: For low values of ρ, i.e., for the case with most
of the trips from periphery to periphery, these results show
that: (a) PC is not very successful in decreasing TTS, while
RG performs well for high compliance; thus, PC is not very
appropriate when destinations are distributed all over the city
and the city center is used mainly for crossing trips, (b) there
is no difference between RG and PCRG schemes. For high ρ
values, on the other hand, the results indicate: (a) Increasing γ,
especially for RG, yields in larger performance improvements,
(b) there are substantial differences between RG and PCRG.
Specifically, for the case with ρ = 0.35, RG cannot prevent
gridlock for γ lower than 0.8, whereas PCRG is able to
prevent it for γ higher than 0.5, showcasing the superiority
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Fig. 6. Performance comparison of the NC case and the three MPC schemes,
for different values of ρ, as a function of driver compliance level γ: (a)–(d)
normalized TTS, (e)–(h) normalized TTD.

of PCRG over RG in improving network performance even in
difficult demand conditions (i.e., high ρ) and low compliance.
Besides the performance improvement aspect of these results,
an intuition with respect to field implementations can be
developed: When a small number of destinations is within
the city center, a route guidance system would be sufficient
and perimeter control is not necessary. This might happen if
the city center has high quality public transport and expensive
parking, discouraging people to travel by car in the center.
If the number of destinations in the center is higher, then
perimeter control is beneficial as it can prevent the center from
overcrowding even for low levels of compliance. Furthermore,
while RG and PCRG have similar performance for high
compliance (with the exception of many city center trips, i.e.,
for ρ = 0.35), the difference is highly pronounced for lower
compliance levels. This highlights the importance of coupling
PC with RG for realistic implementations, as γ might not be
very high due to issues of acceptance by the whole population
of drivers and lack of smart technologies in some cars.

E. A More Detailed Consideration of Travel Time Benefits

Control via route guidance may cause some drivers to
experience longer travel times compared to cases with no
route guidance, leading to lower compliance and finally in less
efficient schemes due to low user acceptance. To examine the
travel time benefit of drivers under the RG and PCRG schemes,
compared to the PC scheme, a series of simulation experiments
are conducted with four different values of ρ and γ. For each
MPC scheme, the travel times of each group of users with a
certain regional O-D are estimated as a function of time based
on the horizontal distance between the cumulative departure-
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Fig. 7. Departure curve (d.c.) and arrival curves (a.c.) for the three MPC
schemes, for the O-D pair 1–7.

arrival curves. Figure 7 provides the cumulative curves for the
three schemes (departure curve is the same, as each scheme
is tested with the same demand) for O-D pair 1–7. While for
small ρ and in the beginning of each case the three schemes are
very similar, when a higher number of trips has the center as
destination (i.e., for high values of ρ), PCRG performs better
than PC and RG. Based on these estimations the distribution
of travel time benefits of RG and PCRG are compared to PC,
which does not have any ability to control individual O-D
movements. The distributions, given in fig. 8, consist of all
O-D pairs and times, and are for 4 different values of ρ, each
case having a constant value of γ (for each case separately,
this corresponds to the γ value for which PC and RG have
the same TTS performance). The distributions are skewed
and contain both positive and negative values indicating the
influence of the schemes for different users. These results
indicate the superiority of PCRG over RG, as it keeps almost
all drivers better off in terms of experienced travel times: In
all cases, roughly 90% of drivers benefit from PCRG, and
in general only 2-3% experience travel times extended longer
than 5 minutes, suggesting substantial potential for practice.

 travel time benefit (min)
-20 -10 0 10 20 %

 o
f 

de
m

an
d

0

20

40

60
 (a) ; = 0.05, . = 0.125

 travel time benefit (min)
-20 -10 0 10 20 %

 o
f 

de
m

an
d

0

20

40

60
 (b) ; = 0.15, . = 0.42

 travel time benefit (min)
-20 -10 0 10 20 %

 o
f 

de
m

an
d

0

20

40

60
 (c) ; = 0.25, . = 0.635

 travel time benefit (min)
-20 -10 0 10 20 %

 o
f 

de
m

an
d

0

20

40

60
 (d) ; = 0.35, . = 0.9

RG
PCRG

Fig. 8. Travel time benefit of drivers in RG and PCRG schemes with respect
to PC scheme, for ρ values of 0.05, 0.15, 0.25, and 0.35, for a constant γ
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F. Sensitivity to Changes in Boundary Capacity

To study the effect of the boundary capacity, a series of sim-
ulation experiments are conducted via scaling the parameters
Cmax
IH (maximum capacity) and α (specifies the accumulation

for which the capacity starts decreasing) used for the congested
scenario in IV-B by factors varying from 0.3 to 1.1 (capacities
are non-binding above 1.1). The results, given in fig. 9, show
that the MPC schemes are fairly insensitive to changes in
boundary capacity for factors larger than 0.6, supporting the
initial conjecture that boundary capacity can be ignored in the
MPC prediction model. Interestingly, boundary capacity seems
to provide benefits similar to perimeter control for those cases
without actual perimeter control, as seen from the decreased
TTS for factors around 0.5 for NC and 0.6 for RG.

V. CONCLUSION

The paper contributes in two aspects: (a) In the traffic mod-
eling side a novel cyclic behavior prohibiting dynamic urban
network model is proposed, with the potential of yielding
more realistic simulation results compared to current MFD-
based urban network models in the literature, (b) in the control
design aspect, integrating perimeter control and route guidance
type actuators, economic nonlinear MPC schemes are devel-
oped for improving mobility in urban networks. Simulation
studies show the potential for substantial improvement in
mobility through the use of route guidance, in comparison
to control via perimeter control only. A further observation is
that since route guidance actuation cannot restrict flows, unlike
perimeter control, it is unable to protect urban regions from
severe congestion especially for cases with imperfect driver
compliance. Highest performance is obtained by using both
types of actuators.

Future research could include (a) comparison of the pro-
posed schemes with other approaches (e.g., feedback perimeter
control [24], [25]), (b) more detailed simulation experiments
with micro- or mesoscopic methods, (c) design of route
guidance based control schemes for mixed urban-freeway
networks, (d) field implementation. A field test is under
preparation for estimation of θIHJ values through cellphone
data in a Swiss city and integration of this information in a
PC scheme (with possibility of extension to PCRG cases).
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