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Abstract— We design model predictive control (MPC)
schemes to improve urban mobility in heterogeneously con-
gested large-scale traffic networks, the modeling and control of
which remains a challenge. The multi-region urban network is
modeled using the macroscopic fundamental diagram (MFD)
of urban traffic, with each region having a well-defined MFD.
For more realistic simulations of urban networks with route
guidance actuation based control, we propose a new model
with cyclic behavior prohibition. Furthermore, we extend upon
earlier work on perimeter control based MPC schemes with
MFD modeling by integrating route guidance type actuation,
which distributes flows exiting a region over its neighboring
regions. Performance of the proposed schemes are evaluated
via simulations of a congested scenario with noise in demand
estimation and measurement errors. Results show the possibility
of substantial improvements in urban network performance.

I. INTRODUCTION
Modeling and control of large-scale urban traffic networks

present considerable challenges. Inadequate infrastructure
and coordination, spatiotemporal propagation of congestion,
and the uncertainty in traveler choices contribute to the diffi-
culties faced when creating realistic models and designing ef-
fective traffic control schemes for urban networks. Although
considerable research has been directed towards designing
efficient real-time traffic control schemes in the last decades
(see [1] for a review), control design for heterogeneously
congested large-scale urban networks remains a challenging
problem.

Traffic modeling and control studies for urban networks
usually focus on microscopic models keeping track of link-
level traffic dynamics with control strategies using local
information. Based on the linear-quadratic regulator (LQR)
problem, traffic-responsive urban control (TUC) [2] and
its extensions [3], [4] represent a multivariable feedback
regulator approach for network-wide urban traffic control.
Although TUC can deal with oversaturated conditions via
minimizing and balancing the relative occupancies of net-
work links, it may not be optimal for heterogeneous networks
with multiple pockets of congestion. Inspired by the max
pressure routing scheme for wireless networks [5], many lo-
cal traffic control schemes have been proposed for networks
of signalized intersections (see [6]–[9]), which involve eval-
uations at each intersection requiring information exclusively
from adjacent links. Although the high accuracy of micro-
scopic traffic models is desirable for simulation purposes,
the increased model complexity results in complications for
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control, whereas local control strategies might not be able
to operate properly under heavily congested conditions, as
they do not protect the congested regions upstream. Another
disadvantage of sophisticated local controllers is that they
might require detailed information on traffic states, which
are difficult to estimate or measure.

An alternative to local real-time traffic signal control
methods is the two layer hierarchical control approach.
At the upper layer, the network-level controller optimizes
network performance via regulating macroscopic traffic flows
through interregional actuation systems (e.g., perimeter con-
trol), whereas at the lower layer the local controllers reg-
ulate microscopic traffic movements through intraregional
actuation systems (e.g., signalized intersections). The macro-
scopic fundamental diagram (MFD) of urban traffic is a
modeling tool for developing low complexity aggregated
dynamic models of urban networks, which are required for
the design of efficient network-level control schemes for
the upper layer. It is possible to model an urban region
with roughly homogeneous accumulation (i.e., small spatial
link density heterogeneity) with an MFD, which provides
a unimodal, low-scatter, and demand-insensitive relationship
between accumulation and trip completion flow [10].

The concept of MFD with an optimum accumulation
was first proposed by Godfrey [11], and its existence was
recently verified with dynamic features and real data in
[10]. Control strategies based on MFD modeling and us-
ing perimeter control type actuation have been proposed
by many researchers for single-region (see [12]–[15]) and
multi-region (see [16], [17]) urban areas. Application of
the MPC technique to the control of urban networks with
MFD modeling also attracted recent interest. In [18], the
authors design a nonlinear MPC for a simple two-region
urban network equipped with a perimeter control system.
The work in [19] generalizes the two-region MFD network
model of [18] to that of an R-region network, and proposes
hybrid MPC schemes for an urban network equipped with
both perimeter control systems and switching signal timing
plans. For the cooperative control of a mixed transportation
network consisting of a freeway and two urban regions, an
MPC scheme is proposed in [20]. A model capturing the
dynamics of heterogeneity is developed in [21], alongside
a hierarchical control system with MPC on the upper level.
More detailed literature reviews in local traffic control, MFD
modeling, and MFD based control can be found in [3],
[7], and [21]. These recent studies on perimeter control
based MPC schemes for urban networks do not explore any
opportunity for manipulating the routes of the drivers through
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feedback control via actuation with route guidance systems.
Although there are also some recent attempts at developing
traffic control schemes with route guidance capability (see
[22], [23],) the integration of perimeter control and route
guidance type actuation still remains unexplored.

In this work we first introduce a new urban network
model capable of expressing aggregated traffic dynamics via
MFDs, while at the same time avoiding cyclic behavior (i.e.,
prohibiting vehicles from flowing back and forth between
neighboring regions), which is where it differs from similar
MFD-based urban network models. Furthermore, we design
network-level nonlinear MPC schemes for a heterogeneous
urban traffic network with a given partition into homoge-
neous regions (see fig. 1), each with a well-defined MFD.
We extend upon earlier works that propose perimeter con-
trol actuation based MPC schemes for urban networks by
integrating the route guidance type actuation in the MPC
formulation. In congested conditions drivers tend to take
longer routes, leading to increased traveled distances and thus
also higher emissions. Results show that the MPC schemes
are capable of decreasing both the delays (time spent in
traffic) and traveled distance at the same time, suggesting
substantial potential in improving urban mobility.

II. MFD-BASED MODELING OF URBAN
NETWORKS

We consider an urban network R with heterogeneous
distribution of accumulation, consisting of R homogeneous
regions, i.e., R = {1, 2, . . . , R}, each with a well-defined
MFD. A network consisting of 7 regions is schematically
shown in fig. 1. The exogenous traffic flow demand generated
in region i with destination region j is denoted by qij(t)
(veh/s), whereas nij(t) (veh) denotes the vehicle accumula-
tion in region i with destination region j, and ni(t) (veh)
the total accumulation in region i, at time t; i, j ∈ R;
ni(t) =

∑
j∈R nij(t). Between each pair of neighboring

regions i and h (i ∈ R, h ∈ Ni, where Ni is the set of
regions neighboring region i) there exists perimeter control
type actuators uih(t) and uhi(t) (–), uih(t), uhi(t) ∈ [0, 1],
that can manipulate the transfer flows between regions i and
h. Furthermore, each region i is assumed to be equipped
with route guidance type actuators θihj(t) (i ∈ R, h ∈ Ni,
j ∈ R \ {i}), that can distribute the transfer flows with
destination region j exiting region i over its neighboring
regions h, with

∑
h∈Ni

θihj(t) = 1.
Dynamics of an R-region MFDs network can be written

as (based on the work in [21] and [22])

ṅii(t) = qii(t)−Mii(t) +
∑
h∈Ni

uhi(t)M̂hii(t), (1a)

ṅij(t) = qij(t)−
∑
h∈Ni

uih(t)M̂ihj(t)

+
∑

h∈Ni;h6=j

uhi(t)M̂hij(t), (1b)

for i, j ∈ R, i 6= j, where M̂ihj(t) (veh/s) is the effective
transfer flow from region i with destination j through the
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Fig. 1. Schematic of an urban network with 7 regions.

next immediate region h, which is calculated as [22]

M̂ihj(t) = min

(
Mihj(t), cih(nh(t))

nij(t)θihj(t)∑
k∈R nik(t)θihk(t)

)
,

(2)

where Mihj(t) and θihj(t) denote the transfer flow and
the percentage of outflow, respectively, from region i to
destination region j through the next immediate region h,
and cih(nh(t)) is the boundary capacity between regions i
and h that depends on the accumulation in region h. The
boundary capacity constraint can be omitted in the predic-
tion model inside MPC for computational advantage. The
physical reasoning of this omission is that (i) the boundary
capacity decreases for accumulations much larger than the
critical accumulation, and (ii) the controller will not allow
the regions to have accumulations close to gridlock [20].
With this omission, the transfer flow Mihj(t) is used in the
prediction model given in (1) instead of the effective transfer
flow M̂ihj(t), and is calculated corresponding to the ratio
between accumulations as

Mihj(t) = θihj(t)
nij(t)

ni(t)
Gi(ni(t)), (3)

where Gi(ni(t)) (veh/s) is the trip completion flow (i.e.,
outflow) of region i at accumulation ni(t), defining the MFD
of region i. It is assumed that all trips inside a region have
similar lengths (i.e., the distance traveled per vehicle inside
a region does not depend on the origin and destination of
the trip). Simulation and empirical results [10] suggest that
the MFD can be approximated by an asymmetric unimodal
curve skewed to the right (i.e., the critical accumulation,
which maximizes Gi(ni(t)), is smaller than half of the jam
accumulation ni,jam, which puts the region in gridlock). Thus,
Gi(ni(t)) can be expressed with a third-order polynomial in
the variable ni(t), e.g. Gi(ni(t)) = ain

3
i (t) + bin

2
i (t) +

cini(t), where ai, bi, and ci are estimated parameters.
The urban network model (1) has no memory of where

the vehicles were previously, thus does not prohibit ve-
hicles from flowing back and forth between neighboring
regions (i.e., it permits cyclic behavior), leading to unrealistic



simulations. While this memoryless choice of routes (i.e.,
sequence of regions) is not crucial when only perimeter
control actuation is applied, it is important for route guidance
based schemes, where the controller tries to emulate perime-
ter control actuation via cyclic routes. For avoiding cyclic
behavior, we propose the following urban network model:

ṅiiii(t) = qii(t)−Miiii(t), ∀i ∈ R, (4a)

ṅiiij(t) = qij(t)−
∑
h∈Ni

uih(t)M̃ofgij(t),

∀i, j ∈ R, j 6= i, (4b)

ṅogii(t) =
∑

f∈N∗
g \{i}

ugi(t)M̃ofgii(t)−Mogii(t),

∀o, g, i ∈ R, g ∈ Ni, o 6= i, (4c)

ṅogij(t) =
∑

f∈N∗
g \{i,j}

ugi(t)M̃ofgij(t)

−
∑

h∈Ni\{o,g}

uih(t)M̃ogihj(t),

∀o, g, i, j ∈ R, g ∈ Ni,

o 6= i, o 6= j, g 6= j, j 6= i, (4d)

where nogij(t), Mogij(t), and θogihj(t) denote the accu-
mulation in region i, transfer flow from region i, and the
percentage of outflow from region i, respectively, with origin
region o, immediately preceding region g, destination region
j, and, for θogihj(t), through the next immediate region h,
N ∗g is the set containing regions neighboring region g and
region g itself, and the distributed transfer flow M̃ogihj(t) is
defined as

M̃ogihj(t) = θogihj(t)Mogij(t), (5)

with Mogij(t) defined as

Mogij(t) =
nogij(t)

ni(t)
Gi(ni(t)). (6)

Using the model (4) for simulations with MPC controllers
having (1) as the prediction model requires the transfer of
variables between the two models as follows:

nij(t) =
∑

o∈R\{j}

∑
g∈R\{j}

nogij(t), ∀i, j ∈ R,

θihj(t) = θogihj(t), ∀o, g, i, j ∈ R, g ∈ Ni, h ∈ Ni \ {o, g}
o 6= i, o 6= j, g 6= j, j 6= i.

The model (4) prohibits cyclic behavior of length two (e.g.,
for fig. 1, a route of 1− 2− 1 is prohibited, whereas a route
of 1 − 2 − 4 − 1 is allowed), thus it is a more realistic
representation of urban network dynamics. For prohibiting
longer cycles, (4) should be extended with longer route
memory, but this is not considered in this work since cycles
longer than two are assumed to be negligible. The model
(4) is used as the simulation model (i.e., the plant) in the
case studies, whereas (1) is used as the prediction model for
computational advantage.

III. MPC SCHEMES WITH PERIMETER CONTROL
AND ROUTE GUIDANCE ACTUATION

We formulate the problem of finding the uih and θihj
values that minimize the total network delay (i.e., total
time spent in the network) as the following finite horizon
constrained optimal control problem:

minimize
R∑
i=1

R∑
j=1

∫ tc+T

tc

nij(t)dt (8)

subject to
nij(tc) = n̂ij(tc), ∀i, j ∈ R
∀t ∈ [tc, tc + T ] :

Model equations (1) and (3), ∀i, j ∈ R
0 ≤

∑
j∈R

nij(t) ≤ ni,jam, ∀i ∈ R

umin ≤ uih(t) ≤ umax, ∀i ∈ R, h ∈ Ni

0 ≤ θihj(t) ≤ 1, ∀i, j ∈ R, i 6= j, h ∈ Ni∑
h∈Ni

θihj(t) = 1, ∀i, j ∈ R, i 6= j,

where tc is the current control sampling instant in time and
n̂ij(tc) is the measurement taken at that instant, T is the
prediction horizon, ni,jam is the jam accumulation for region
i, whereas umin and umax are the lower and upper bounds of
the perimeter control input uih.

To be able to solve (8) numerically, we resort to approx-
imating it as a finite dimensional nonlinear program (NLP)
via direct methods. The resulting NLP is nonconvex due to
the nonlinear prediction model, and as such can be solved
via NLP solvers that are able to treat nonconvex problems.

We propose three MPC schemes: (i) perimeter control
MPC (MPCPC), (ii) route guidance MPC (MPCRG), (iii)
perimeter control and route guidance MPC (MPCPCRG), each
with a different set of available actuator types. MPCPC and
MPCRG schemes solve variants of the optimization problem
given in (8) in receding horizon, each with different condi-
tions on uih(tc) and θihj(tc), whereas MPCPCRG solves ex-
actly the MPC problem as given in (8). The MPCPC scheme
has access to the perimeter control type actuation only, while
drivers are left free to choose their own routes. Thus, for
this scheme, only the perimeter control commands uih(tc)
are the control inputs, whereas route guidance commands
θihj(tc) are assumed to be known (this assumption will be
relaxed and further investigated in an extended version of this
work). In contrast to the MPCPC scheme, MPCRG has access
to the route guidance type actuation only, while perimeter
control commands are fixed to umax. Thus, for the MPCRG
scheme, the route guidance commands θihj(tc) are the only
control inputs. Finally, the MPCPCRG scheme has access to
both the perimeter control and route guidance type actuators,
thus both types of commands are the control inputs.

IV. CASE STUDIES
A. Network Description and Simulation Setup

All simulations are conducted on a 7 region urban network
having the structure given in fig. 1, with the simulation



model given in (4) for representing the reality. Each region is
assumed to have the same MFD, with the MFD parameters
ai = 1.4877 · 10−7/3600, bi = −2.9815 · 10−3/3600,
ci = 15.0912/3600, jam accumulation ni,jam = 104 (veh),
critical accumulation ni,cr = 3.4 · 103 (veh), and maximum
outflow Gi(ni,cr) = 6.3 (veh/s), which are consistent with
the MFD observed in a part of downtown Yokohama (see
[10]), which has an area of approximately 10 km2.

Simulation-based studies, with the MPC schemes imple-
mented via the CasADi toolbox [24] in MATLAB, calling the
solver IPOPT [25], revealed that direct single shooting for the
MPCPC, and direct collocation for the MPCRG and MPCPCRG
schemes, give the best results in terms of computational
efficiency, thus these methods are chosen for the case studies.
A numerical integrator based on the RK4 method is used in
single shooting, whereas a Legendre polynomial of degree
3 is used for polynomial interpolation in collocation. Fur-
thermore, prediction horizon is chosen as T = 20 minutes,
whereas the horizon is split into N = 5 control intervals.
Simulation and control sampling times are 30 s and 240 s,
while the length of the simulation experiment is Texp = 240
(in number of simulation steps), giving an effective length
of 120 minutes. Bounds of the perimeter control commands
are umin = 0.1 and umax = 0.9. Move blocking is employed
in the formulations to reduce computational effort, with the
moves after the first one blocked. To avoid abrupt changes in
control inputs, rate limiting is employed with the rate limit
chosen as 0.2 between two consecutive control steps, for both
control inputs. Studies into how the control configuration
influences performance and computational effort will be
included in an extended version of this work.

For capturing the effect of measurement noise in accu-
mulation states, we add random noise terms with normal
distribution to the measured states:

ñij(t) = nij(t) + nij(t) · N (0, σ2
nij

), ∀i, j ∈ R, (9)

where the noise has zero mean and its variance is chosen as
σ2
nij

= 0.25 in the simulations. Furthermore, the uncertainty
in demands is also considered, with the MPC schemes having
access to average demand profiles whereas the actual flow
demands driving the simulation model are assumed to have
zero mean random noise terms:

q̃ij(t) = qij(t) + qij(t) · N (0, σ2
qij ), ∀i, j ∈ R, (10)

with the variance chosen as σ2
qij = 0.25 in the simulations,

representing presence of large noise.
Performance metrics are sum of total time spent (STTS,

veh·s) and sum of total traveled distance (STTD, veh·m),
which are defined for a single simulation experiment as
follows:

STTS = Ts ·
Texp∑
t=1

∑
i∈R

ni(t), (11)

STTD = Ts ·
Texp∑
t=1

∑
i∈R

li ·
(
Mii(t) +

∑
h∈Ni

∑
j∈R\i

Qihj(t)

)
,

(12)

where li is the average trip length of trips inside re-
gion i, assumed constant and chosen as 3600 m for
all regions, whereas Qihj(t) is defined as Qihj(t) =
uih(t)θihj(t)Mij(t).

The MPC controllers are compared with a no control (NC)
case, in which the perimeter control commands uih(tc) are
fixed to umax, while drivers are left free to choose their routes.
In simulations this is captured by calculating the θihj(tc)
values by a logit model (see [26]) using the current travel
times from region i to destination region j through the KSP
shortest sequences of regions connecting the two, calculated
with Dijkstra’s algorithm. As drivers adapt to traffic condi-
tions in real time, the θihj(tc) values are updated at each
control step. The logit model relaxes the assumption that
drivers always choose the physical shortest path. Simulations
with route choices calculated via logit model thus tend to be
more realistic because drivers rarely have perfect information
and do not always behave as rational actors. The parameters
of the logit model can be adjusted to reflect the amount of
information available to drivers (or sensitivity of drivers to
differences in travel time between routes).

B. Congested Scenario

In this case study the network is uncongested at the begin-
ning but faces increased flow demands as time progresses.
The results are given in fig. 2, where the evolution of regional
accumulations are shown alongside graphs of total time
spent, cumulative traveled distance, outflow of city center
(i.e., region 4), and the noisy flow demands q̃ij(t), all as a
function of simulation time, for the no control (NC) case and
the three MPC schemes. A summary of the results is given
in table I, which shows that all MPC schemes are capable
of improving mobility of the urban network, as they have
decreased values of both the STTS and STTD metrics, in
comparison to the NC case.

Compared to the other two MPC schemes, MPCPCRG is
superior in distributing the vehicle flows efficiently over
the whole network, which translates to efficient usage of
the network capacity, leading to less congestion and also
decreased values of STTS. This is clearly seen in the regional
accumulation plots (b)–(d) in fig. 2, where MPCPCRG can
suppress congestion evenly in all regions, whereas MPCRG
cannot avoid congestion in region 2 due to lack of perimeter
control authority, although it is successful in managing the
rest of the network. MPCPC, on the other hand, can use its

TABLE I
PERFORMANCE EVALUATION FOR CONGESTED SCENARIO

Control
scheme

STTS
(×107

veh·s)

STTS
imprv.
over
NC
(%)

STTD
(×108

veh·m)

STTD
imprv.
over
NC
(%)

Avg.
CPU
time
(s)

Max.
CPU
time
(s)

NC 9.53 – 4.97 – – –
MPCPC 8.19 14 4.88 2 1.27 1.59
MPCRG 7.00 27 4.61 7 5.65 6.11

MPCPCRG 6.54 31 4.41 11 6.51 7.21
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Fig. 2. Results of the congested scenario for the no control (NC) case and the three MPC schemes. Regional accumulations for (a) NC, (b) MPCPC, (c)
MPCRG, (d) MPCPCRG. Comparison of the four cases for (e) total time spent, (f) cumulative traveled distance, (g) outflow of city center. (h) Noisy flow
demand profiles, expressing demands for trips between 5 origin-destination region pairs.

perimeter control authority efficiently to avoid congestion in
all regions, but lacking the authority to manage routes, it
cannot distribute traffic as efficiently as MPCPCRG. Noting
that control sampling time is chosen as 240 s, the com-
putation time results1 given in table I suggest that these
schemes are computationally tractable, since their CPU times
are negligible in comparison to the control sampling time.

The no control case cannot avoid heavy congestion close
to gridlock in the city center, as seen in fig. 2 (a), leading
to drastic decrease in outflow for the city center and thus
inefficient use of the city center capacity for transferring
flows from periphery to periphery. This is crucial for both
STTS and STTD metrics, since routes through the city center
are generally the physical shortest paths connecting two
opposing peripheral regions. The MPC schemes, on the other
hand, make efficient use of the city center, as seen in the
city center outflow (i.e., G4(n4(t))) plot (g) in fig. 2, which
shows that they succeed in keeping the city center close to
critical accumulation ncr (thus, operating close to maximum
outflow G4(ncr)) until network starts to unload.

The fact that route guidance based schemes can improve
both STTS and STTD metrics, compared to the MPCPC
scheme, stems from their authority over choosing routes
for the vehicles, resulting in an increase in the percentage

1These CPU times were obtained by calling IPOPT [25] from the CasADi
toolbox [24] in MATLAB 8.5.0 (R2015a), on a 64-bit Windows PC with
3.6-GHz Intel Core i7 processor and 16-GB RAM.

of drivers using the physical shortest path, as this would
mean they spend less time (thus, lower STTS) and travel
for shorter distances (thus, lower STTD) before reaching
their destination and leaving the network. The percentage
of drivers that are momentarily using the physical shortest
path to their destinations is given in fig. 3 for the different
schemes, which shows that route guidance based schemes
succeed in making more drivers use the shortest path for
their trips, explaining the improvement in STTD.

C. Effect of Driver Compliance

In an ideal case with route guidance, all drivers would
follow the commands θihj(tc) exactly, but this may not be
the case in reality as some drivers might prefer choosing
their own routes instead of complying. To analyze how this
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Fig. 3. Usage of physical shortest path for the congested scenario.



TABLE II
STTS (×107 VEH·S) AND STTD (×108 VEH·M) VALUES FOR VARYING

DRIVER COMPLIANCE LEVEL

Control Driver compliance level
scheme 10% 30% 50% 70% 90%

MPCRG (STTS) 8.96 7.88 7.20 6.69 6.49
MPCPCRG (STTS) 8.31 7.65 7.07 6.64 6.41
MPCRG (STTD) 4.96 4.83 4.66 4.51 4.44

MPCPCRG (STTD) 4.91 4.79 4.63 4.49 4.40

affects performance of the route guidance based schemes, a
series of simulations, based on the congested scenario, are
conducted by varying compliance from 10% to 90%. The
results, given in table II, show that for levels beyond 50%,
performance of the route guidance based MPC schemes are
fairly insensitive to changes in driver compliance.

V. CONCLUSION

In this paper we proposed (a) a new urban network model
with prohibition of cyclic behavior for more realistic MFD-
based simulations of route guidance based schemes, (b)
network-level perimeter control and route guidance based
nonlinear MPC schemes via MFD modeling of heteroge-
neous urban networks, and demonstrated the possibility of
substantial improvements in urban mobility through their use.

Future work will include (a) detailed studies into how the
control configuration influences performance and computa-
tional effort, (b) development of hybrid MPC formulations of
the proposed schemes for computational advantage, (c) com-
parison of the proposed schemes with other approaches (e.g.,
perimeter control based feedback control [17]), (d) more
realistic simulation experiments with micro- or mesoscopic
methods. Another interesting direction could be to explore
methods for designing local traffic management schemes for
enabling the implementation of the route guidance com-
mands θihj(tc) in a real setting.
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